|
|
Proposal for a realtime Einstein-synchronization-defined satellite virtual clock |
Chenhao Yan(严晨皓)1, Xueyi Tang(汤雪逸)1, Shiguang Wang(王时光)1,†, Lijiaoyue Meng(孟李皎悦)1, Haiyuan Sun(孙海媛)1, Yibin He(何奕彬)1, and Lijun Wang(王力军)1,2,‡ |
1 Department of Precision Instrument, Tsinghua University, Beijing 100091, China; 2 Department of Physics, Tsinghua University, Beijing 100091, China |
|
|
Abstract Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous (GEO) satellite virtual clock concept based on ground-satellite synchronization and present a beacon transponder structure for its implementation (scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1$\sigma$ value of 0.633 ps (two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.
|
Received: 07 January 2024
Revised: 18 March 2024
Accepted manuscript online: 12 April 2024
|
PACS:
|
06.30.Ft
|
(Time and frequency)
|
|
84.40.Ua
|
(Telecommunications: signal transmission and processing; communication satellites)
|
|
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1402100). |
Corresponding Authors:
Shiguang Wang, Lijun Wang
E-mail: wangsg@tsinghua.edu.cn;lwan@tsinghua.edu.cn
|
Cite this article:
Chenhao Yan(严晨皓), Xueyi Tang(汤雪逸), Shiguang Wang(王时光), Lijiaoyue Meng(孟李皎悦), Haiyuan Sun(孙海媛), Yibin He(何奕彬), and Lijun Wang(王力军) Proposal for a realtime Einstein-synchronization-defined satellite virtual clock 2024 Chin. Phys. B 33 070601
|
[1] Barsocchi P, Celandroni N, Davoli F, Ferro E, Giambene G, Castano F J G, Gotta A, Moreno J I and Todorova P 2005 Int. J. Satell. Commun. Network. 23 265 [2] Koudelka O and Schrotter P 2007 Acta Astronaut. 60 986 [3] Minnett P J, Alvera-Azcarate A, Chin T M, Corlett G K, Gentemann C L, Karagali I, Li X, Marsouin A, Marullo S, Maturi E and others 2019 Remote Sens. Environ. 233 111366 [4] Yang M, Xu F, Ren J G, Yin J, Li Y, Cao Y, Shen Q, Yong H L, Zhang L, Liao S K and others 2019 Opt. Express 27 36114 [5] Zhan Y F, Wan P, Jiang C X, Pan X H, Chen X and Guo S 2020 IEEE Wirel. Commun. 27 12 [6] Chawla I, Karthikeyan L and Mishra A K 2020 J. Hydrol. 585 124826 [7] Wu Z Q, Zhou S S, Hu X G, Liu L, Shuai T, Xie Y H, Tang C P, Pan J Y, Zhu L F and Chang Z Q 2018 GPS Solut. 22 1 [8] Huang G W, Cui B B, Xu Y and Zhang Q 2019 Adv. Space Res. 63 2899 [9] Janis J P, Jones M R and Quackenbush N F 2021 GPS Solut. 25 141 [10] Wang Q H, Droz F and Rochat P 2011 Geomatics and Information Science of Wuhan University 36 1177 [11] Dong S W, Wu H T, Li X H, Guo S R and Yang Q W 2008 Metrologia 45 S47 [12] Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T and Ely T A 2021 Nature 595 43 [13] Qin W J, Ge Y L, Wei P, Dai P P and Yang X H 2020 Measurement 153 107356 [14] Cao Y, Huang G W, Xie W, Xie S C and Wang H H 2021 Acta Geodaetica et Geophysica 56 303 [15] Gu S F, Mao F Y, Gong X P, Lou Y D, Xu X Y and Zhou Y 2021 Remote Sens-Basel. 13 5041 [16] Yao J, Yoon S, Stressler B, Hilla S and Schenewerk M 2021 GPS Solut. 25 106 [17] Lee S W, Kim J, Jeong M S and Lee Y J 2011 Adv. Space Res. 47 1654 [18] Zhou W, Ruan R G, Jia X L and Jin R 2020 China Satellite Navigation Conference (CSNC) 2020 Proceedings (Singapore: Springer) vol. 3 p. 134 [19] Cernigliaro A, Valloreia S, Galleani L and Tavella P 2013 2013 International Conference on Localization and GNSS (ICL-GNSS), June 25-27, 2013, Turin, Italy, p. 1 [20] Tappero F, Dempster A, Iwata T, Imae M, Ikegami T, Fukuyama Y, Hagimoto K and Iwasaki A 2006 Navigation 53 219 [21] Iwata T, Kawasaki Y, Imae M, Suzuyama T, Matsuzawa T, Fukushima S, Hashibe Y, Takasaki N, Kokubu K, Iwasaki A and others 2007 Navigation 54 99 [22] Iwata T, Suzuyama T, Imae M, Hashibe Y and others 2010 International Journal of Navigation and Observation 2010 604239 [23] Li X H, Wu H T, Bian Y J and Wang D N 2009 Sci. China Ser. G 52 353 [24] Jing W F and Lu X C 2017 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), July 9-13, 2017, Besancon, France, p. 6 [25] Wu H T, Bian Y J, Lu X C, Li X H and Wang D N 2009 Sci. China Ser. G 52 393 [26] Marlow B L S and Scherer D R 2021 IEEE Trans. Ultrason. Ferr. 68 2007 [27] Diddams S A, Bergquist J C, Jefferts S R and Oates C W 2004 Science 306 1318 [28] Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X, Campbell J C, McGrew W F, Zhang X, Hassan Y S and others 2020 Science 368 889 [29] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 [30] Zhang H, Ruan J, Liu D D, Yang F, Fan S C, Bai Y, Guan Y, Wang X L, Shi J R and Zhang S G 2022 IEEE Trans. Instrum. Meas. 71 1 [31] Rovira-Garcia A, Juan J M, Sanz J, Gonzalez-Casado G, VenturaTraveset J, Cacciapuoti L and Schoenemann E 2021 Navigation-US 68 815 [32] Fonville B, Matsakis D, Pawlitzki A and Schaefer W 2004 Proceedings of the 36th Annual Precise Time and Time Interval Systems and Applications Meeting, 7-9 December, 2004, Washington DC, p. 149 [33] Fujieda M, Gotoh T and Amagai J 2016 J. Phys.: Conf. Ser. 723 012036 [34] Fujieda M, Piester D, Gotoh T, Becker J, Aida M and Bauch A 2014 Metrologia 51 253 [35] Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M and Amagai J 2012 IEEE Trans. Ultrason. Ferr. 59 2625 [36] Nakagawa F, Amagai J, Tabuchi R, Takahashi Y, Nakamura M, Tsuchiya S and Hama S 2013 Metrologia 50 200 [37] Shapiro S S and Wilk M B 1965 Biometrika 52 591 [38] Gurvits L I 2020 Adv. Space Res. 65 868 [39] D’Addario L R 1991 IEEE T. Instrum. Meas. 40 584 [40] Piester D and Schnatz H 2009 PTB-Mitteilungen 119 33 [41] Panfilo G and Arias F 2019 Metrologia 56 042001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|