Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096102    DOI: 10.1088/1674-1056/ad51f2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strip method to construct a two-dimensional quasilattice with eight-fold symmetry

Weishen Huang(黄伟深) and Xiujun Fu(傅秀军)†
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract  Based on the substitution rule and symmetry, we propose a method to generate an octagonal quasilattice consisting of square and rhombus tiles. Local configurations and Ammann lines are used to guide the growth of the tiles in a quasiperiodic order. The structure obtained is a perfect eight-fold symmetric quasilattice, which is confirmed by the radial distribution function and the diffraction pattern.
Keywords:  quasicrystals      eight-fold symmetry      Ammann-Beenker tiling  
Received:  18 March 2024      Revised:  10 May 2024      Accepted manuscript online:  30 May 2024
PACS:  61.44.Br (Quasicrystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674102)
Corresponding Authors:  Xiujun Fu     E-mail:  phxjfu@scut.edu.cn

Cite this article: 

Weishen Huang(黄伟深) and Xiujun Fu(傅秀军) Strip method to construct a two-dimensional quasilattice with eight-fold symmetry 2024 Chin. Phys. B 33 096102

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Grimm U and Kramer P 2019 arXiv: Math-ph 1906.10392
[3] Stampfli P 1986 Helv. Phys. Acta 59 1260
[4] Gählser F, Baake M and Schlottmann M 1994 Phys. Rev. B 50 12458
[5] Gummelt P 1996 Geom. Ded. 62 1
[6] Gählser F 2000 Mater. Sci. & Eng. A 294 199
[7] Penrose R 1979 Math. Intel. 2 32
[8] Levine D and Steinhardt P J 1984 Phys. Rev. Lett. 53 2477
[9] Socolar J E S and Steinhardt P J 1986 Phys. Rev. B 34 617
[10] Elser V 1986 Acta Cryst. A 42 36
[11] Onoda G Y, Steinhardt P J, Divincenzo D P and Socolar J E S 1988 Phys. Rev. Lett. 60 2653
[12] Beenker F P M 1982 Algebraic theory of non-periodic tilings by two simple building blacks: a square and a rhombus. (Eindhoven University of Technology: T. H - Report 82-WSK-04)
[13] Ammann R, Grünbaum B and Shephard G C 1992 Disc. Comput. Geom. 8 1
[14] Cai C, Liao L G and Fu X J 2019 Phys. Lett. A 383 2213
[15] Jaric M V 1989 Introduction to the Mathematics of Quasicrystal, 1st edn. (San Diego: Academic Press)
[16] Harriss E O and Lamb J S W 2004 Theor. Comput. Sci. 319 241
[17] Jeong H C 2007 Phys. Rev. Lett. 98 135501
[18] Zhang H M, Cai C and Fu X J 2018 Chin. Phys. Lett. 35 066101
[19] Gumbs G and Ali M K 1988 Phys. Rev. Lett. 60 1081
[20] Ye J R, Huang W S and Fu X J 2022 Chin. Phys. B 31 086101
[21] Socolar J E S 1989 Phys. Rev. B 39 10519
[22] Grunbaum B and Shepard G C 1986 Tilings and patterns (New York: Scientific American)
[23] Elenius M, Fredrik H M, et al. 2009 Phys. Rev. B 79 144201
[24] Zhao S and Fu X J 2023 Phys. Lett. A 480 128988
[1] Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions
Zhiqiang Sun(孙志强), Guolin Hou(侯国林), Yanfen Qiao(乔艳芬), and Jincun Liu (刘金存). Chin. Phys. B, 2024, 33(1): 016107.
[2] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[3] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[4] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[5] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[6] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[7] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[8] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[9] A Dugdale–Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals
Li Wu (李梧), Xie Ling-Yun (解凌云). Chin. Phys. B, 2013, 22(3): 036201.
[10] Elliptic hole in octagonal quasicrystals
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(1): 016102.
[11] Electronic and optical properties of CdS/CdZnS nanocrystals
A. John Peter, Chang Woo Lee. Chin. Phys. B, 2012, 21(8): 087302.
[12] The relation between the generalised Eshelby integral and the generalised BCS and DB modelsvspace1mm
Fan Tian-You (范天佑) and Fan Lei(范蕾). Chin. Phys. B, 2011, 20(3): 036102.
[13] Elastic analysis of an elliptic notch in quasicrystals of point group 10 subjected to shear loading
Li Lian-He(李联和). Chin. Phys. B, 2010, 19(4): 046101.
[14] Dynamic behaviour of the icosahedral Al--Pd--Mn quasicrystal with a Griffith crack
Wang Xiao-Fang(王晓芳), Fan Tian-You(范天佑), and Zhu Ai-Yu(祝爱玉). Chin. Phys. B, 2009, 18(2): 709-714.
[15] Group-theoretical method for physical property tensors of quasicrystals
Gong Ping(龚平), Hu Cheng-Zheng(胡承正), Zhou Xiang(周详), Wang Ai-Jun(王爱军), and Miao Ling(缪灵). Chin. Phys. B, 2006, 15(9): 2065-2079.
No Suggested Reading articles found!