Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 083401    DOI: 10.1088/1674-1056/ad5322
DATA PAPER Prev  

Electron capture and excitation in intermediate-energy He2+-H(1s,2s) collisions

Yadong Liu(刘亚东)1,2, Congcong Jia(贾聪聪)2, Mingxuan Ma(马茗萱)2,3, Xiang Gao(高翔)2, Ling Liu(刘玲)2,†, Yong Wu(吴勇)2,‡, Xiangjun Chen(陈向军)1, and Jianguo Wang(王建国)2
1 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 Institute of Applied Physics and Computational Mathematitics, Beijing 100088, China;
3 Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China
Abstract  The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He$^{2+}$-H(1s) and He$^{2+}$-H(2s) collision systems. In order to ensure the accuracy of our calculated cross sections, a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile, respectively. The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu. The present calculations are also compared with the results from other theoretical methods. These cross section data are useful for the investigation of astrophysics and laboratory plasma.
Keywords:  atomic orbital close-coupling (AOCC) method      inelastic collision processes      electron capture and excitation  
Received:  24 April 2024      Revised:  26 May 2024      Accepted manuscript online:  03 June 2024
PACS:  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  34.70.+e (Charge transfer)  
  34.80.Dp (Atomic excitation and ionization)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA 1602500) and the National Natural Science Foundation of China (Grant Nos. 11934004 and 12241410).
Corresponding Authors:  Ling Liu, Yong Wu     E-mail:  liu_ling@iapcm.ac.cn;wu_yong@iapcm.ac.cn

Cite this article: 

Yadong Liu(刘亚东), Congcong Jia(贾聪聪), Mingxuan Ma(马茗萱), Xiang Gao(高翔), Ling Liu(刘玲), Yong Wu(吴勇), Xiangjun Chen(陈向军), and Jianguo Wang(王建国) Electron capture and excitation in intermediate-energy He2+-H(1s,2s) collisions 2024 Chin. Phys. B 33 083401

[1] Anderson H, Hellermann M G von, Hoekstra R, Horton L D, Howman A C, Konig R W T, Martin R, Olson R E and Summers H P 2000 Plasma Phys. Control. Fusion 42 781
[2] Delabie E, Brix M, Giroud C, Jaspers R J E, Marchuk O, O’Mullane M G, Ralchenko Y, Surrey E, Hellermann M G von, Zastrow K D and Contributors J E 2010 Plasma Phys. Control. Fusion 52 125008
[3] Chluba J, Rubiño-Martín J A and Sunyaev R A 2007 Monthly Notices of the Royal Astronomical Society 374 1310
[4] Shimoda J and Laming J M 2019 Monthly Notices of the Royal Astronomical Society 485 5453
[5] Liu C L, Zou S Y, He B and Wang J G 2015 Chin. Phys. B 24 093402
[6] Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F and Ma X W 2024 Chin. Phys. B 33 023401
[7] Gu L Y, Shah C and Zhang R T 2022 Sensors 22 752
[8] Bayfield J E and Khayrallah G A 1975 Phys. Rev. A 12 869
[9] Olson R E, Salop A, Phaneuf R A and Meyer F W 1977 Phys. Rev. A 16 1867
[10] Shah M B and Gilbody H B 1978 J. Phys. B: At. Mol. Phys. 11 121
[11] Hvelplund P and Andersen A 1982 Phys. Scr. 26 375
[12] Hughes M P, Geddes J and Gilbody H B 1994 J. Phys. B: At. Mol. Opt. Phys. 27 1143
[13] Detleffsen D, Anton M, Werner A and Schartner K H 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4195
[14] Fritsch W, Shingal R and Lin C D 1991 Phys. Rev. A 44 5686
[15] Toshima N 1994 Phys. Rev. A 50 3940
[16] Liu L, Wang J G and Janev R K 2008 Phys. Rev. A 77 032709
[17] Agueny H, Hansen J P, Dubois A, Makhoute A, Taoutioui A and Sisourat N 2019 Atomic Data and Nuclear Data Tables 129-130 101281
[18] Winter T G 2007 Phys. Rev. A 76 062702
[19] Minami T, Lee T G, Pindzola M S and Schultz D R 2008 J. Phys. B: At. Mol. Opt. Phys. 41 135201
[20] Faulkner J, Abdurakhmanov I B, Alladustov S U, Kadyrov A S and Bray I 2019 Plasma Phys. Control. Fusion 61 095005
[21] Blanco S A, Falcon C A, Reinhold C O, Casaubon J I and Piacentini R D 1987 J. Phys. B: Atom. Mol. Phys. 20 6295
[22] Jouin H and Harel C 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3219
[23] Esry B D, Chen Z, Lin C D and Piacentini R D 1993 J. Phys. B: At. Mol. Opt. Phys. 26 1579
[24] Chan F T and Eichler J 1979 J. Phys. B: Atom. Mol. Phys. 12 L305
[25] Montanari C C, Gravielle M S and Miraglia J E 1997 Phys. Scr. 56 279
[26] Ibaaz A, Hernandez R E, Dubois A and Sisourat N 2016 J. Phys. B: At. Mol. Opt. Phys. 49 085202
[27] Pye C C and Mercer C J 2012 J. Chem. Educ. 89 1405
[28] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2023 NIST Atomic Spectra Database (version 5.11).
[29] Gao J W, Miteva T, Wu Y, Wang J G, Dubois A and Sisourat N 2021 Phys. Rev. A 103 L030803
[1] Theoretical investigation of electron-impact ionization of W8+ ion
Shiping Zhang(张世平), Fangjun Zhang(张芳军), Denghong Zhang(张登红), Xiaobin Ding(丁晓彬), Jun Jiang(蒋军), Luyou Xie(颉录有), Yulong Ma(马玉龙), Maijuan Li(李麦娟), Marek Sikorski, and Chenzhong Dong(董晨钟). Chin. Phys. B, 2024, 33(3): 033401.
[2] Electron-impact ionization of W9+ and W10+
Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌). Chin. Phys. B, 2023, 32(6): 063401.
[3] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[4] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[5] Debye-screening effect on electron-impact excitation of helium-like Al11+ and Fe24+ ions
Yu-Long Ma(马玉龙), Ling Liu(刘玲), Lu-You Xie(颉录有), Yong Wu(吴勇), Deng-Hong Zhang(张登红), Chen-Zhong Dong(董晨钟), Yi-Zhi Qu(屈一至), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043401.
[6] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[7] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[8] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[9] Electron-impact single ionizaiton for W4+ and W5+
Denghong Zhang(张登红), Luyou Xie(颉录有), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), Yinglong Shi(师应龙), Yizhi Qu(屈一至). Chin. Phys. B, 2018, 27(5): 053402.
[10] Simulations of guiding of low-energy ions through a single nanocapillary in insulating materials
Shi-Dong Liu(刘世东), Yong-Tao Zhao(赵永涛), Yu-Yu Wang(王瑜玉). Chin. Phys. B, 2017, 26(10): 106104.
[11] Relativistic and distorted wave effects on Xe 4d electron momentum distributions
Minfu Zhao(赵敏福), Xu Shan(单旭), Shanshan Niu(牛姗姗), Xiangjun Chen(陈向军). Chin. Phys. B, 2017, 26(9): 093103.
[12] Fractal dynamics in the ionization of helium Rydberg atoms
Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎). Chin. Phys. B, 2016, 25(11): 110301.
[13] Production of projectile and target K-vacancy in near-symmetric collisions of 60-100 MeV Cu9+ ions with thin Zn target
Yipan Guo(郭义盼), Zhihu Yang(杨治虎), Shubin Du(杜树斌), Hongwei Chang(常宏伟), Qingliang Xia(夏清良), Qiumei Xu(徐秋梅). Chin. Phys. B, 2016, 25(3): 033401.
[14] Triple differential cross sections of magnesium in doubly symmetric geometry
S Y Sun(孙世艳), X Y Miao(苗向阳), Xiang-Fu Jia(贾祥富). Chin. Phys. B, 2016, 25(1): 013401.
[15] Resonance enhanced electron impact excitation for P-like Cu XV
Li Shuang (李双), Yan Jun (颜君), Li Chuan-Ying (李传莹), Huang Min (黄敏), Chen Chong-Yang (陈重阳). Chin. Phys. B, 2015, 24(11): 113401.
No Suggested Reading articles found!