ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optical storage of circular airy beam in atomic vapor |
Hong Chang(常虹)1,2, Xin Yang(杨欣)3, Yan Ma(马燕)1,2, Xinqi Yang(杨鑫琪)1,2, Mingtao Cao(曹明涛)1,2,†, Xiaofei Zhang(张晓斐)4, Ruifang Dong(董瑞芳)1,2,5,‡, and Shougang Zhang(张首刚)1,2,§ |
1 Key Laboratory of Time Reference and Applications, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China; 2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China; 4 Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021, China; 5 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract The realization of quantum storage of spatial light field is of great significance to the construction of high-dimensional quantum repeater. In this paper, we experimentally realize the storage and retrieval of circular Airy beams (CABs) by using the $\varLambda $-type three-level energy system based on the electromagnetically induced transparency in a hot rubidium atomic vapor cell. The weak probe beam field is modulated with phase distribution of CABs by a spatial light modulator. We store the probe circular Airy beam (CAB) into the rubidium atomic vapor cell and retrieve it after the demanded delay. We quantitatively analyze the storage results and give corresponding theoretical explanations. Moreover, we investigate the autofocusing and self-healing effect of the retrieved CAB, which indicates that the properties and beam shape of CAB maintain well after storage. Our work will have potential applications in the storage of high-dimensional quantum information, and is also useful for improving the channel capacities of quantum internet.
|
Received: 19 February 2024
Revised: 27 April 2024
Accepted manuscript online:
|
PACS:
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Corresponding Authors:
Mingtao Cao, Ruifang Dong, Shougang Zhang
E-mail: mingtaocao@ntsc.ac.cn;dongruifang@ntsc.ac.cn;szhang@ntsc.ac.cn
|
Cite this article:
Hong Chang(常虹), Xin Yang(杨欣), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚) Optical storage of circular airy beam in atomic vapor 2024 Chin. Phys. B 33 084202
|
[1] Efremidis N K and Christodoulides D N 2010 Opt. Lett. 35 4045 [2] Papazoglou D G, Efremidis N K, Christodoulides D N and Tzortzakis S 2011 Opt. Lett. 36 1842 [3] Chremmos I, Zhang P, Prakash J, Efremidis N K, Christodoulides D N and Chen Z G 2011 Opt. Lett. 36 3675 [4] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979 [5] Mohanty K, Mahajan S, Pinton G, Muller M and Jing Y 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 65 1460 [6] Jiang Y F, Cao Z L, Shao H H, Zheng W T, Zeng B X and Lu X H 2016 Opt. Express 24 18072 [7] Lu W L, Sun X, Chen H J, Liu S Y and Lin Z F 2019 Phys. Rev. A 99 013817 [8] Shahabadi V and Abdollahpour D 2021 J. Quant. Spectrosc. Radiat. Trans. 272 107771 [9] Moradi H, Jabbarpour M, Abdollahpour D and Hajizadeh F 2022 Opt. Lett. 47 4115 [10] Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S 2013 Nat. Commun. 4 2622 [11] Hang C and Huang G X 2014 Phys. Rev. A 89 013821 [12] Wang J M, Zuo Y, Wang X C, Christodoulides D N, Siviloglou G A and Chen J F 2024 Phys. Rev. Lett. 132 143601 [13] Efremidis N K, Paltoglou V and von Klitzing W 2013 Phys. Rev. A 87 043637 [14] Goutsoulas M and Efremidis N K 2018 Phys. Rev. A 97 063831 [15] Kadlimatti R and Parimi P V 2019 IEEE Trans. Antennas Propag. 67 260 [16] Lai S T, Wang Y H, Lan Y P and Qian Y X 2019 Ann Phys. 531 1900168 [17] Zheng G L, Wan L L, He T F, Wu Q Y and Zhang X H 2024 Photonics 11 64 [18] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2008 Opt. Lett. 33 207 [19] Hu Y, Zhang P, Lou C B, Huang S, Xu J J and Chen Z G 2010 Opt. Lett. 35 2260 [20] Ye Z Y, Liu S, Lou C B, Zhang P, Hu Y, Song D H, Zhao J L and Chen Z G 2011 Opt. Lett. 36 3230 [21] Zhuang F, Shen J Q, Du X Y and Zhao D M 2012 Opt. Lett. 37 3054 [22] Hang C and Huang G X 2013 Phys. Rev. A 88 013825 [23] Ye F J, Zhang L Y, Wang F R, Yang Y M, Yu Y, Liu J, Wei D, Zhang P, Gao H and Li F L 2015 Opt. Commun. 345 129 [24] Zhong H, Zhang Y Q, Zhang Z Y, Li C B, Zhang D, Zhang Y P and Belić M R 2016 Opt. Lett. 41 5644 [25] Wu Z K, Zhang Q, Guo H and Gu Y Z 2018 Optik 164 465 [26] Gong X S, Hua Y H and Wu Z K 2019 Optik 199 163116 [27] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413 [28] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783 [29] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [30] Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D and Peng K C 2017 Nat. Commun. 8 718 [31] Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D and Peng K C 2022 Nat. Commun. 13 2368 [32] Moiseev S A and Kröll S 2001 Phys. Rev. Lett. 87 173601 [33] Moiseev S A and Tittel W 2011 New J. Phys. 13 063035 [34] Guo J X, Feng X T, Yang P Y, Yu Z F, Chen L Q, Yuan C H and Zhang W P 2019 Nat. Commun. 10 148 [35] Ding D S 2018 Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles (Singapore: Springer) pp. 91- 107 [36] Hang C, Bai Z Y and Huang G X 2014 Phys. Rev. A 90 023822 [37] Wang L, Sun Y H, Wang R, Zhang X J, Chen Y, Kang Z H, Wang H H and Gao J Y 2019 Opt. Express 27 6370 [38] Wang C Y, Chen Y, Jiang Z B, Yu Y, Cao M T, Wei D, Gao H and Li F L 2022 Front. Phys. 17 22503 [39] Yang X J and Wu Z S 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), December 3-6, 2018, Hangzhou, China, p. 1 [40] Li H, Liu H G and Chen X F 2018 Opt. Express 26 21204 [41] Wei B Y, Liu S, Chen P, Qi S X, Zhang Y, Hu W, Lu Y Q and Zhao J L 2018 Appl. Phys. Lett. 112 121101 [42] Liu X Y, Sun C and Deng D M 2021 Chin. Phys. B 30 024202 [43] Huang Y H, Li X P, Akram Z, Zhu H and Qi Z H 2021 IEEE Antennas Wirel. Propag. Lett. 20 1093 [44] Wang D M, Jin L W, Rosales-Guzmán C and Gao W 2021 Appl. Phys. B 127 22 [45] Chen L, Wen J S, Sun D and Wang L G 2020 Opt. Express 28 36516 [46] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables 10th edn. (Washington: U. S. National Bureau of Standards) pp. 446-448 [47] Li N, Jiang Y F, Huang K K and Lu X H 2014 Opt. Express 22 22847 [48] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901 [49] Glorieux Q, Clark J B, Marino A M, Zhou Z F and Lett P D 2012 Opt. Express 20 12350 [50] Ding D S, Zhou Z Y, Shi B S and Guo G C 2013 Nat. Commun. 4 2527 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|