Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087302    DOI: 10.1088/1674-1056/ad47e3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance

Zhi-Fu Duan(段志福)1, Chang-Hao Ding(丁长浩)1, Zhong-Ke Ding(丁中科)1, Wei-Hua Xiao(肖威华)1, Fang Xie(谢芳)2,†, Nan-Nan Luo(罗南南)1,‡, Jiang Zeng(曾犟)1, Li-Ming Tang(唐黎明)1, and Ke-Qiu Chen(陈克求)1
1 Department of Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 College of Physical Science and Engineering Technology, Yichun University, Yichun 336000, China
Abstract  Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials. Here, by using first-principles calculations and semiclassical Boltzmann transport theory, we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaInX3 (X=S, Se, Te). It is found that the lattice thermal conductivities can reach values as low as 3.07 Wm1K1, 1.16 Wm1K1 and 0.57 Wm1K1 for GaInS3, GaInSe3, and GaInTe3, respectively, at room temperature. This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaInX3 materials. Furthermore, by integrating the characteristics of electronic and thermal transport, the dimensionless figure of merit ZT can reach maximum values of 0.95, 2.37, and 3.00 for GaInS3, GaInSe3, and GaInTe3, respectively. Our results suggest that monolayer Janus GaInX3 (X=S, Se, Te) is a promising candidate for thermoelectric and heat management applications.
Keywords:  thermoelectric performance      thermal conductivity      Boltzmann transport      two-dimensional materials  
Received:  09 March 2024      Revised:  02 May 2024      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  74.25.fc (Electric and thermal conductivity)  
  74.25.Kc (Phonons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104145, 62201208, and 12374040). Numerical computations were performed at the National Supercomputer Center in Changsha.
Corresponding Authors:  Fang Xie, Nan-Nan Luo     E-mail:  xiefang2023@jxycu.edu.cn;luonn@hnu.edu.cn

Cite this article: 

Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求) GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance 2024 Chin. Phys. B 33 087302

[1] Yang L, Chen Z G, Dargusch M S and Zou J 2018 Advanced Energy Materials 8 1701797
[2] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[3] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[4] Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angewandte Chemie International Edition 48 8616
[5] Bruzzone S and Fiori G 2011 Appl. Phys. Lett. 99 222108
[6] Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R and Iversen B B 2008 Nat. Mater. 7 811
[7] Chu S, Cui Y and Liu N 2017 Nat. Mater. 16 16
[8] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[9] Pei Y, Wang H and Snyder G J 2012 Adv. Mater. 24 6125
[10] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601
[11] Jia T, Carrete J, Madsen G K, Zhang Y and Wei S H 2022 Phys. Rev. B 105 245203
[12] Nissimagoudar A S, Rashid Z, Ma J and Li W 2020 Inorganic Chemistry 59 14899
[13] Skoug E J and Morelli D T 2011 Phys. Rev. Lett. 107 235901
[14] Jia P Z, Mo Z X, Deng L Q, Zhang Y, Yu X, Zeng Y J, Deng Y X and Xie Z X 2024 Diamond and Related Materials 141 110609
[15] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, et al. 2008 Science 320 634
[16] Jiang J H, Lu S and Chen J 2023 Chin. Phys. Lett. 40 096301
[17] He J, Yu C, Lu S, Zhang Z and Chen J 2024 Appl. Phys. Lett. 124 022201
[18] Zeng Y J, Liu Y Y, Zhou W X and Chen K Q 2018 Chin. Phys. B 27 036304
[19] Jonson M and Mahan G 1980 Phys. Rev. B 21 4223
[20] Broido D A, Malorny M, Birner G, Mingo N and Stewart D A 2007 Appl. Phys. Lett. 91 231922
[21] Feng Z, Jia T, Zhang J, Wang Y and Zhang Y 2017 Phys. Rev. B 96 235205
[22] He J, Hu Y, Li D and Chen J 2022 Nano Research 15 3804
[23] Sales B, Mandrus D and Williams R K 1996 Science 272 1325
[24] Ding Z K, Zeng Y J, Pan H, Luo N, Zeng J, Tang L M and Chen K Q 2022 Phys. Rev. B 106 L121401
[25] He R, Wang D, Luo N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401
[26] Pan H, Tang L M and Chen K Q 2022 Phys. Rev. B 105 064401
[27] Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 107 104303
[28] Wang Y, Luo N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 108 054401
[29] Ding Z K, Zeng Y J, Liu W, Tang L M and Chen K Q 2024 Advanced Functional Materials 2401684
[30] Liu W, Ding Z K, Luo N, Zeng J, Tang L M and Chen K Q 2024 Phys. Rev. B 109 115422
[31] Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X, Gong S, He J, Zhang Y, Zeng Z, et al. 2016 Phys. Rev. B 94 125203
[32] Ye X, Feng Z, Zhang Y, Zhao G and Singh D J 2022 Phys. Rev. B 105 104309
[33] Yang R, Yue S, Quan Y and Liao B 2021 Phys. Rev. B 103 184302
[34] Patel A, Singh D, Sonvane Y, Thakor P and Ahuja R 2020 ACS Applied Materials & Interfaces 12 46212
[35] Tao W L, Lan J Q, Hu C E, Cheng Y, Zhu J and Geng H Y 2020 J. Appl. Phys. 127 035101
[36] Tang S, Bai S, Wu M, Luo D, Zhang J, Wang D, Yang S and Zhao L D 2022 Materials Today Physics 29 100923
[37] Geng J, Zhang P, Tang Z and Ouyang T 2024 Chin. Phys. B 33 046501
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Stratmann R E, Scuseria G E and Frisch M J 1998 The Journal of Chemical Physics 109 8218
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Heyd J, Scuseria G E and Ernzerhof M 2003 The Journal of Chemical Physics 118 8207
[44] Tuckerman M E, Ungar P J, Von Rosenvinge T and Klein M L 1996 The Journal of Physical Chemistry 100 12878
[45] Togo A 2023 J. Phys. Soc. Jpn. 92 012001
[46] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys.: Condens. Matter 35 353001
[47] Carrete J, Li W, Lindsay L, Broido D A, Gallego L J and Mingo N 2016 Mater. Res. Lett. 4 204
[48] Brorsson J, Hashemi A, Fan Z, Fransson E, Eriksson F, Ala-Nissila T, Krasheninnikov A V, Komsa H P and Erhart P 2022 Advanced Theory and Simulations 5 2100217
[49] Eriksson F, Fransson E and Erhart P 2019 Advanced Theory and Simulations 2 1800184
[50] Errea I, Calandra M and Mauri F 2014 Phys. Rev. B 89 064302
[51] Li W, Carrete J, Katcho N A and Mingo N 2014 Computer Physics Communications 185 1747
[52] Madsen G K, Carrete J and Verstraete M J 2018 Computer Physics Communications 231 140
[53] Du G, Li C and Cheng L 2023 Phys. Rev. B 107 085422
[54] Xiao W H, Zeng B, Ding Z K, Pan H, Liu W W, Li Q Q, Yang K, Luo N, Zeng J, Chen K Q and Tang L M 2023 Appl. Phys. Lett. 123 013101
[55] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G and Wang B T 2019 Nanoscale 11 19923
[56] Vu T V, Hieu N N, Lavrentyev A, Khyzhun O, Lanh C V, Kartamyshev A, Phuc H V and Hieu N V 2022 RSC advances 12 7973
[57] Bernard J E and Zunger A 1987 Phys. Rev. B 36 3199
[58] Liao H, Huang L, Xie X, Dong H, Wu F, Sun Z and Li J 2023 Chin. Phys. B 32 107304
[59] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[60] Singh A K and Hennig R G 2014 Appl. Phys. Lett. 105 042103
[61] Liu P F, Bo T, Xu J, Yin W, Zhang J, Wang F, Eriksson O and Wang B T 2018 Phys. Rev. B 98 235426
[62] Yao H, Chen C, Cao F, Mao J, Liu X, Zhang Q and Lin X 2023 Phys. Rev. B 108 195206
[63] Liu W, Xie Y, Yuan J and Chen Y 2022 Nanoscale 14 8797
[64] Jin Z, Liao Q, Fang H, Liu Z, Liu W, Ding Z, Luo T and Yang N 2015 Scientific Reports 5 18342
[65] Shafique A and Shin Y H 2017 Scientific Reports 7 506
[66] Julian C L 1965 Phys. Rev. 137 A128
[67] Chang C and Zhao L D 2018 Materials Today Physics 4 50
[68] Roufosse M and Klemens P 1973 Phys. Rev. B 7 5379
[69] Wang H, Qin G, Li G, Wang Q and Hu M 2018 2D Materials 5 015022
[70] Jia T, Liu X, Zhang Y and Wei S H 2023 Phys. Rev. B 107 115204
[71] Morelli D T, Jovovic V and Heremans J P 2008 Phys. Rev. Lett. 101 035901
[72] Slack G A 1973 Journal of Physics and Chemistry of Solids 34 321
[73] Broido D, Ward A and Mingo N 2005 Phys. Rev. B 72 014308
[74] Zhang D, Hu S, Sun Y, Liu X, Wang H, Wang H, Chen Y and Ni Y 2020 ES Energy & Environment 10 59-65
[75] Chen Z, Zhang X and Pei Y 2018 Adv. Mater. 30 1705617
[76] Zhou S, Liu C C, Zhao J and Yao Y 2018 npj Quantum Materials 3 16
[77] Lei S, Wang X, Li B, Kang J, He Y, George A, Ge L, Gong Y, Dong P, Jin Z, et al. 2016 Nat. Nanotechnol. 11 465
[78] Zhang L, Du M H and Singh D J 2010 Phys. Rev. B 81 075117
[79] Kümar S and Schwingenschlogl U 2016 Phys. Rev. B 94 035405
[80] Graziosi P, Li Z and Neophytou N 2022 Appl. Phys. Lett. 120 072102
[81] Gong J, Hong A, Shuai J, Li L, Yan Z, Ren Z and Liu J M 2016 Physical Chemistry Chemical Physics 18 16566
[82] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, et al. 2016 Science 351 141
[1] Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties
Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞). Chin. Phys. B, 2024, 33(8): 087403.
[2] Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
Kuncan Zheng(郑坤灿), Zhendong Li(李震东), Yutong Cao(曹豫通), Ben Liu(刘犇)), and Junlei Hu(胡君磊). Chin. Phys. B, 2024, 33(6): 064401.
[3] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[4] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[5] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[6] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[7] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[8] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[9] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[10] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[11] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[12] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[13] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
[14] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[15] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
No Suggested Reading articles found!