Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087302    DOI: 10.1088/1674-1056/ad47e3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance

Zhi-Fu Duan(段志福)1, Chang-Hao Ding(丁长浩)1, Zhong-Ke Ding(丁中科)1, Wei-Hua Xiao(肖威华)1, Fang Xie(谢芳)2,†, Nan-Nan Luo(罗南南)1,‡, Jiang Zeng(曾犟)1, Li-Ming Tang(唐黎明)1, and Ke-Qiu Chen(陈克求)1
1 Department of Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 College of Physical Science and Engineering Technology, Yichun University, Yichun 336000, China
Abstract  Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials. Here, by using first-principles calculations and semiclassical Boltzmann transport theory, we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaIn$X_3$ ($X = {\rm S}$, Se, Te). It is found that the lattice thermal conductivities can reach values as low as 3.07 W$\cdot$m$^{-1}\cdot$K$^{-1}$, 1.16 W$\cdot$m$^{-1}\cdot$K$^{-1}$ and 0.57 W$\cdot$m$^{-1}\cdot$K$^{-1}$ for GaInS$_3$, GaInSe$_3$, and GaInTe$_3$, respectively, at room temperature. This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaIn$X_3$ materials. Furthermore, by integrating the characteristics of electronic and thermal transport, the dimensionless figure of merit $ZT$ can reach maximum values of 0.95, 2.37, and 3.00 for GaInS$_3$, GaInSe$_3$, and GaInTe$_3$, respectively. Our results suggest that monolayer Janus GaIn$X_3$ ($X={\rm S}$, Se, Te) is a promising candidate for thermoelectric and heat management applications.
Keywords:  thermoelectric performance      thermal conductivity      Boltzmann transport      two-dimensional materials  
Received:  09 March 2024      Revised:  02 May 2024      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  74.25.fc (Electric and thermal conductivity)  
  74.25.Kc (Phonons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104145, 62201208, and 12374040). Numerical computations were performed at the National Supercomputer Center in Changsha.
Corresponding Authors:  Fang Xie, Nan-Nan Luo     E-mail:  xiefang2023@jxycu.edu.cn;luonn@hnu.edu.cn

Cite this article: 

Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求) GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance 2024 Chin. Phys. B 33 087302

[1] Yang L, Chen Z G, Dargusch M S and Zou J 2018 Advanced Energy Materials 8 1701797
[2] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[3] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[4] Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angewandte Chemie International Edition 48 8616
[5] Bruzzone S and Fiori G 2011 Appl. Phys. Lett. 99 222108
[6] Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R and Iversen B B 2008 Nat. Mater. 7 811
[7] Chu S, Cui Y and Liu N 2017 Nat. Mater. 16 16
[8] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[9] Pei Y, Wang H and Snyder G J 2012 Adv. Mater. 24 6125
[10] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601
[11] Jia T, Carrete J, Madsen G K, Zhang Y and Wei S H 2022 Phys. Rev. B 105 245203
[12] Nissimagoudar A S, Rashid Z, Ma J and Li W 2020 Inorganic Chemistry 59 14899
[13] Skoug E J and Morelli D T 2011 Phys. Rev. Lett. 107 235901
[14] Jia P Z, Mo Z X, Deng L Q, Zhang Y, Yu X, Zeng Y J, Deng Y X and Xie Z X 2024 Diamond and Related Materials 141 110609
[15] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, et al. 2008 Science 320 634
[16] Jiang J H, Lu S and Chen J 2023 Chin. Phys. Lett. 40 096301
[17] He J, Yu C, Lu S, Zhang Z and Chen J 2024 Appl. Phys. Lett. 124 022201
[18] Zeng Y J, Liu Y Y, Zhou W X and Chen K Q 2018 Chin. Phys. B 27 036304
[19] Jonson M and Mahan G 1980 Phys. Rev. B 21 4223
[20] Broido D A, Malorny M, Birner G, Mingo N and Stewart D A 2007 Appl. Phys. Lett. 91 231922
[21] Feng Z, Jia T, Zhang J, Wang Y and Zhang Y 2017 Phys. Rev. B 96 235205
[22] He J, Hu Y, Li D and Chen J 2022 Nano Research 15 3804
[23] Sales B, Mandrus D and Williams R K 1996 Science 272 1325
[24] Ding Z K, Zeng Y J, Pan H, Luo N, Zeng J, Tang L M and Chen K Q 2022 Phys. Rev. B 106 L121401
[25] He R, Wang D, Luo N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401
[26] Pan H, Tang L M and Chen K Q 2022 Phys. Rev. B 105 064401
[27] Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 107 104303
[28] Wang Y, Luo N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 108 054401
[29] Ding Z K, Zeng Y J, Liu W, Tang L M and Chen K Q 2024 Advanced Functional Materials 2401684
[30] Liu W, Ding Z K, Luo N, Zeng J, Tang L M and Chen K Q 2024 Phys. Rev. B 109 115422
[31] Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X, Gong S, He J, Zhang Y, Zeng Z, et al. 2016 Phys. Rev. B 94 125203
[32] Ye X, Feng Z, Zhang Y, Zhao G and Singh D J 2022 Phys. Rev. B 105 104309
[33] Yang R, Yue S, Quan Y and Liao B 2021 Phys. Rev. B 103 184302
[34] Patel A, Singh D, Sonvane Y, Thakor P and Ahuja R 2020 ACS Applied Materials & Interfaces 12 46212
[35] Tao W L, Lan J Q, Hu C E, Cheng Y, Zhu J and Geng H Y 2020 J. Appl. Phys. 127 035101
[36] Tang S, Bai S, Wu M, Luo D, Zhang J, Wang D, Yang S and Zhao L D 2022 Materials Today Physics 29 100923
[37] Geng J, Zhang P, Tang Z and Ouyang T 2024 Chin. Phys. B 33 046501
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Stratmann R E, Scuseria G E and Frisch M J 1998 The Journal of Chemical Physics 109 8218
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Heyd J, Scuseria G E and Ernzerhof M 2003 The Journal of Chemical Physics 118 8207
[44] Tuckerman M E, Ungar P J, Von Rosenvinge T and Klein M L 1996 The Journal of Physical Chemistry 100 12878
[45] Togo A 2023 J. Phys. Soc. Jpn. 92 012001
[46] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys.: Condens. Matter 35 353001
[47] Carrete J, Li W, Lindsay L, Broido D A, Gallego L J and Mingo N 2016 Mater. Res. Lett. 4 204
[48] Brorsson J, Hashemi A, Fan Z, Fransson E, Eriksson F, Ala-Nissila T, Krasheninnikov A V, Komsa H P and Erhart P 2022 Advanced Theory and Simulations 5 2100217
[49] Eriksson F, Fransson E and Erhart P 2019 Advanced Theory and Simulations 2 1800184
[50] Errea I, Calandra M and Mauri F 2014 Phys. Rev. B 89 064302
[51] Li W, Carrete J, Katcho N A and Mingo N 2014 Computer Physics Communications 185 1747
[52] Madsen G K, Carrete J and Verstraete M J 2018 Computer Physics Communications 231 140
[53] Du G, Li C and Cheng L 2023 Phys. Rev. B 107 085422
[54] Xiao W H, Zeng B, Ding Z K, Pan H, Liu W W, Li Q Q, Yang K, Luo N, Zeng J, Chen K Q and Tang L M 2023 Appl. Phys. Lett. 123 013101
[55] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G and Wang B T 2019 Nanoscale 11 19923
[56] Vu T V, Hieu N N, Lavrentyev A, Khyzhun O, Lanh C V, Kartamyshev A, Phuc H V and Hieu N V 2022 RSC advances 12 7973
[57] Bernard J E and Zunger A 1987 Phys. Rev. B 36 3199
[58] Liao H, Huang L, Xie X, Dong H, Wu F, Sun Z and Li J 2023 Chin. Phys. B 32 107304
[59] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[60] Singh A K and Hennig R G 2014 Appl. Phys. Lett. 105 042103
[61] Liu P F, Bo T, Xu J, Yin W, Zhang J, Wang F, Eriksson O and Wang B T 2018 Phys. Rev. B 98 235426
[62] Yao H, Chen C, Cao F, Mao J, Liu X, Zhang Q and Lin X 2023 Phys. Rev. B 108 195206
[63] Liu W, Xie Y, Yuan J and Chen Y 2022 Nanoscale 14 8797
[64] Jin Z, Liao Q, Fang H, Liu Z, Liu W, Ding Z, Luo T and Yang N 2015 Scientific Reports 5 18342
[65] Shafique A and Shin Y H 2017 Scientific Reports 7 506
[66] Julian C L 1965 Phys. Rev. 137 A128
[67] Chang C and Zhao L D 2018 Materials Today Physics 4 50
[68] Roufosse M and Klemens P 1973 Phys. Rev. B 7 5379
[69] Wang H, Qin G, Li G, Wang Q and Hu M 2018 2D Materials 5 015022
[70] Jia T, Liu X, Zhang Y and Wei S H 2023 Phys. Rev. B 107 115204
[71] Morelli D T, Jovovic V and Heremans J P 2008 Phys. Rev. Lett. 101 035901
[72] Slack G A 1973 Journal of Physics and Chemistry of Solids 34 321
[73] Broido D, Ward A and Mingo N 2005 Phys. Rev. B 72 014308
[74] Zhang D, Hu S, Sun Y, Liu X, Wang H, Wang H, Chen Y and Ni Y 2020 ES Energy & Environment 10 59-65
[75] Chen Z, Zhang X and Pei Y 2018 Adv. Mater. 30 1705617
[76] Zhou S, Liu C C, Zhao J and Yao Y 2018 npj Quantum Materials 3 16
[77] Lei S, Wang X, Li B, Kang J, He Y, George A, Ge L, Gong Y, Dong P, Jin Z, et al. 2016 Nat. Nanotechnol. 11 465
[78] Zhang L, Du M H and Singh D J 2010 Phys. Rev. B 81 075117
[79] Kümar S and Schwingenschlogl U 2016 Phys. Rev. B 94 035405
[80] Graziosi P, Li Z and Neophytou N 2022 Appl. Phys. Lett. 120 072102
[81] Gong J, Hong A, Shuai J, Li L, Yan Z, Ren Z and Liu J M 2016 Physical Chemistry Chemical Physics 18 16566
[82] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, et al. 2016 Science 351 141
[1] Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties
Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞). Chin. Phys. B, 2024, 33(8): 087403.
[2] Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
Kuncan Zheng(郑坤灿), Zhendong Li(李震东), Yutong Cao(曹豫通), Ben Liu(刘犇)), and Junlei Hu(胡君磊). Chin. Phys. B, 2024, 33(6): 064401.
[3] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[4] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[5] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[6] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[7] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[8] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[9] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[10] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[11] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[12] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[13] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
[14] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[15] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
No Suggested Reading articles found!