Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120304    DOI: 10.1088/1674-1056/acf492
GENERAL Prev   Next  

Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels

Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁)
School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Entanglement-assisted quantum error correction codes (EAQECCs) play an important role in quantum communications with noise. Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender (Alice) and the receiver (Bob). It is usually assumed that the preshared ebits of Bob are error free. However, noise on these ebits is unavoidable in many cases. In this work, we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs. We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels. In quantum memory channels, we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory. Furthermore, we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different. In both asymmetric and memory quantum channels, we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.
Keywords:  asymmetric quantum channel      entanglement fidelity      entanglement-assisted quantum error correction code      quantum memory channel  
Received:  25 May 2023      Revised:  28 August 2023      Accepted manuscript online:  29 August 2023
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Key R&D Program of China (Grant No.2022YFB3103802), the National Natural Science Foundation of China (Grant Nos.62371240 and 61802175), and the Fundamental Research Funds for the Central Universities (Grant No.30923011014).
Corresponding Authors:  Ji-Hao Fan     E-mail:  jihao.fan@outlook.com

Cite this article: 

Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁) Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels 2023 Chin. Phys. B 32 120304

[1] Deutsch I H 2020 PRX Quantum 1 020101
[2] Cho A 2020 Science 369 130
[3] Calderbank A, Rains E, Shor P and Sloane N 1998 IEEE Trans. Inf. Theory 44 1369
[4] Ketkar A, Klappenecker A, Kumar S and Sarvepalli P K 2006 IEEE Trans. Inf. Theory 52 4892
[5] Brun T A, Devetak I and Hsieh M H 2006 Science 314 5798
[6] Hsieh M H and Wilde M M 2010 IEEE Trans. Inf. Theory 56 4682
[7] Brun T A, Devetak I and Hsieh M H 2014 IEEE Trans. Inf. Theory 60 3073
[8] Hsieh M H, Devetak I and Winter A 2008 IEEE Trans. Inf. Theory 54 3078
[9] Lai C Y and Brun T A 2012 Phys. Rev. A 86 032319
[10] Wilde M M, Hsieh M H and Babar A 2013 IEEE Trans. Inf. Theory 60 1203
[11] Fan J H, Li J, Zhou Y B, Hsieh M H and Poor H V 2022 Proc. Natl. Acad. Sci. USA 119 e2202235119
[12] Steane A M 1996 Phys. Rev. A 54 4741
[13] Ioffe L and Mézard M 2007 Phys. Rev. A 75 032345
[14] Sarvepalli P K, Klappenecker A and Rötteler M 2009 Proc. Roy. Soc. A 465 1645
[15] Li R, Xu G and Guo L 2014 Int. J. Mod. Phys. B 28 1450017
[16] Fan J H, Li J, Wang J, Wei Z and Hsieh M H 2021 IEEE Trans. Commun. 69 3971
[17] Cafaro C and Mancini S 2010 Phys. Rev. A 82 012306
[18] Aliferis P and Preskill J 2008 Phys. Rev. A 78 052331
[19] Brooks P and Preskill J 2013 Phys. Rev. A 87 032310
[20] Tuckett D K, Bartlett S D and Flammia S T 2018 Phys. Rev. Lett. 120 050505
[21] Tuckett D K, Bartlett S D, Flammia S T and Brown B J 2020 Phys. Rev. Lett. 124 130501
[22] Tuckett D K, Darmawan A S, Chubb C T, Bravyi S, Bartlett S D and Flammia S T 2019 Phys. Rev. X 9 041031
[23] Nielsen M A and Chuang I L Quantum Computation and Quantum Information (Cambridge: Cambridge University) p. 426
[24] Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203
[25] Fan J H 2020 Int. J. Theor. Phys. 59 3769
[26] Kretschmann D and Werner R F 2005 Phys. Rev. A 72 062323
[27] Bowen G 2002 Phys. Rev. A 66 052313
[28] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhou Z, Wang Z H, Teng J, Guo G C and Han Z F 2022 Nat. Photon. 16 154
[29] Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Chen W, Zhou Z, Wang Z H, Teng J, Guo G C and Han Z F 2022 Optica 9 812
[1] Complete population transfer between next-adjacent energy levels of a transmon qudit
Yingshan Zhang(张颖珊), Pei Liu(刘培), Jingning Zhang(张静宁), Ruixia Wang(王睿侠), Weiyang Liu(刘伟洋), Jiaxiu Han(韩佳秀), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2023, 32(12): 120306.
[2] Deep learning framework for time series classification based on multiple imaging and hybrid quantum neural networks
Jianshe Xie(谢建设) and Yumin Dong(董玉民). Chin. Phys. B, 2023, 32(12): 120302.
[3] Single-flux-quantum-based qubit control with tunable driving strength
Kuang Liu(刘匡), Yifan Wang(王一凡), Bo Ji(季波), Wanpeng Gao(高万鹏), Zhirong Lin(林志荣), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(12): 128501.
[4] Blind quantum computation with a client performing different single-qubit gates
Guang-Yang Wu(吴光阳), Zhen Yang(杨振), Yu-Zhan Yan(严玉瞻), Yuan-Mao Luo(罗元茂), Ming-Qiang Bai(柏明强), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(11): 110302.
[5] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[6] A quantum algorithm for Toeplitz matrix-vector multiplication
Shang Gao(高尚) and Yu-Guang Yang(杨宇光). Chin. Phys. B, 2023, 32(10): 100309.
[7] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[8] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[9] Coherent manipulation of a tunable hybrid qubit via microwave control
Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(8): 087302.
[10] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[11] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[12] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[13] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[14] Nonadiabatic geometric phase in a doubly driven two-level system
Weixin Liu(刘伟新), Tao Wang(汪涛), and Weidong Li(李卫东). Chin. Phys. B, 2023, 32(5): 050311.
[15] Quantum color image scaling based on bilinear interpolation
Chao Gao(高超), Ri-Gui Zhou(周日贵), and Xin Li(李鑫). Chin. Phys. B, 2023, 32(5): 050303.
No Suggested Reading articles found!