ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Discrete multi-step phase hologram for high frequency acoustic modulation |
Meng-Qing Zhou(周梦晴), Zhao-Xi Li(李照希)†, Yi Li(李怡), Ye-Cheng Wang(王业成), Juan Zhang(张娟), Dong-Dong Chen(谌东东), Yi Quan(全熠), Yin-Tang Yang(杨银堂), and Chun-Long Fei(费春龙)‡ |
School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot match, acoustic holograms pursue the realization of high-resolution complex acoustic fields and gradually tend to high-frequency ultrasound applications. However, conventional continuous phase holograms are limited by three-dimensional (3D) printing size, and the presence of unavoidable small printing errors makes it difficult to achieve acoustic field reconstruction at high frequency accuracy. Here, we present an optimized discrete multi-step phase hologram. It can ensure the reconstruction quality of image with high robustness, and properly lower the requirement for the 3D printing accuracy. Meanwhile, the concept of reconstruction similarity is proposed to refine a measure of acoustic field quality. In addition, the realized complex acoustic field at 20 MHz promotes the application of acoustic holograms at high frequencies and provides a new way to generate high-fidelity acoustic fields.
|
Received: 05 July 2023
Revised: 11 August 2023
Accepted manuscript online: 28 August 2023
|
PACS:
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
43.60.Sx
|
(Acoustic holography)
|
|
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2023M732745), the National Natural Science Foundations of China (Grant Nos. 61974110 and 62104177), the Fundamental Research Funds for the Central Universities, China (Grant Nos. QTZX23022 and JBF211103), and the Cooperation Program of XDU– Chongqing IC Innovation Research Institute (Grant No. CQ IRI-2022CXY-Z07). |
Corresponding Authors:
Zhao-Xi Li, Chun-Long Fei
E-mail: lizhaoxi@xidian.edu.cn;clfei@xidian.edu.cn
|
Cite this article:
Meng-Qing Zhou(周梦晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王业成), Juan Zhang(张娟), Dong-Dong Chen(谌东东), Yi Quan(全熠), Yin-Tang Yang(杨银堂), and Chun-Long Fei(费春龙) Discrete multi-step phase hologram for high frequency acoustic modulation 2024 Chin. Phys. B 33 014303
|
[1] Kruizinga P, Pim van der Meulen, Fedjajevs A, Mastik F, Springeling, Nico de Jong G, Bosch J G and Leus G 2017 Sci. Adv. 3 e1701423 [2] Collins D J, Ma Z C, Han J Y and Ai Y 2017 Lab Chip 17 91 [3] Baudoin M, Thomas J L, Sahely R A, Gerbedoen J C, Gong Z, Sivery A, Matar O B, Smagin N, Favreau P and Vlandas A 2020 Nat. Commun. 11 4244 [4] Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W and Subramanian S 2017 Nat. Commun. 8 14608 [5] Maimbourg G, Houdouin A, Deffieux T, Tanter M and Aubry J F 2018 Phys. Med. Biol. 63 025026 [6] Hirayama R, Martinez Plasencia D, Masuda N and Subramanian S 2019 Nature 575 320 [7] Jiménez-Gambín S, Jiménez N, Benlloch J M and Camarena F 2019 Phys. Rev. Appl. 12 014016 [8] Marzo A, Caleap M and Drinkwater B W 2018 Phys. Rev. Lett. 120 044301 [9] Li J F, Crivoi A, Peng X Y, Shen L, Pu Y J, Fan Z and Cummer S A 2021 Commun. Phys. 4 113 [10] Yang Y, Ma T, Li S N, Zhang Q, Huang J Q, Liu Y F, Zhuang J W, Li Y C, Du X M, Niu L L, Xiao Y, Wang C Z, Cai F Y and Zheng H R 2021 Research 2021 9781394 [11] Lam K H, Hsu H S, Li Y, Lee C Y, Lin A, Zhou Q F and Shung K K 2013 Biotechnol. Bioeng. 110 881 [12] Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B and Subramanian S 2015 Nat. Commun. 6 8661 [13] Marzo A and Drinkwater B W 2019 Proc. Natl. Acad. Sci. USA 116 84 [14] Ochiai Y, Hoshi T and Rekimoto J 2014 PloS One 9 e102525 [15] Hu H J, Zhu X, Wang C H, Li X S, Lee S, Huang Z L, Chen R M, Chen Z Y, Wang C F, Gu Y, Chen Y M, Lei Y S, Zhang T J, Kim N, Guo Y X, Teng Y, Zhou W B, Li Y, Nomoto A, Sternini S, Zhou Q F, Pharr M, Lanza Di Scalea F and Xu S 2018 Sci. Adv. 4 eaar3979 [16] Zhu B P, Fei C L, Wang C, Zhu Y H, Yang X F, Zheng H and Shung K K 2017 ACS Sens. 2 172 [17] Gao H, Gu Z M, Liang B, et al. 2016 Appl. Phys. Lett. 108 073501 [18] Fan Q B, Wang D P, Huo P C, Zhang Z J, Liang Y Z and Xu T 2017 Opt. Express 25 9285 [19] Melde K, Mark A G, Qiu T and Fischer P 2016 Nature 537 518 [20] Brown M D, Cox B T and Treeby B E 2023 Phys. Rev. Appl. 19 044032 [21] Gu Y Y, Chen C Y, Rufo J, Shen C, Wang Z Y, Huang P H, Fu H, Zhang P R, Cummer S A, Tian Z H and Huang T J 2020 ACS Nano 14 14635 [22] Shakya G, Yang T, Gao Y, Fajrial A K, Li B, Ruzzene M and Ding X 2022 Nat. Commun. 13 987 [23] Tamulevičius T, Juodėnas M, Klinavičius T, Paulauskas A, Jankauskas K, Žutautas A and Tamulevičius S 2018 Sci. Rep. 8 14245 [24] Zheng G X, Mïhlenbernd H, Kenney M, Li G X, Zentgraf T and Zhang S 2015 Nat. Nanotechnol. 10 308 [25] Li J X, Kamin S, Zheng G X, Neubrech F, Zhang S and Liu N 2018 Sci. Adv. 4 eaar6768 [26] Fushimi T, Yamamoto K and Ochiai Y 2021 Sci. Rep. 11 12678 [27] Ma Z C, Melde K, Athanassiadis A G, Schau M, Richter H, Qiu T and Fischer P 2020 Nat. Commun. 11 4537 [28] Cox L, Melde K, Croxford A, Fischer P and Drinkwater B W 2019 Phys. Rev. Appl. 12 064055 [29] Melde K, Choi E, Wu Z G, Palagi S, Qiu T and Fischer P 2018 Adv. Mater. 30 1704507 [30] Ma Z C, Holle A W, Melde K, Qiu T, Poeppel K, Kadiri V M and Fischer P 2020 Adv. Mater. 32 1904181 [31] Li Z X, Fei C L, Yang S H, Hou C X, Zhao J X, Li Y and Yang Y T 2022 Adv. Funct. Mater. 32 2209173 [32] Ma Z C, Joh H, Fan D E and Fischer P 2022 Adv. Sci. 9 2104401 [33] Moreno V, Román J F and Salgueiro J R 1997 Am. J. Phys. 65 556 [34] Jin Y B, Kumar R, Poncelet O, Mondain-Monval O and Brunet T 2019 Nat. Commun. 10 143 [35] Vovchuk D, Khobzei M, Filonov D and Ginzburg P 2022 Sci. Rep. 12 2479 [36] Vodo P, Parimi P V, Lu W T and Sridhar S 2005 Appl. Phys. Lett. 86 201108 [37] Habibi M, Foroughi S, Karamzadeh V and Packirisamy M 2022 Nat. Commun. 13 1800 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|