Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 014303    DOI: 10.1088/1674-1056/acf44c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Discrete multi-step phase hologram for high frequency acoustic modulation

Meng-Qing Zhou(周梦晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王业成), Juan Zhang(张娟), Dong-Dong Chen(谌东东), Yi Quan(全熠), Yin-Tang Yang(杨银堂), and Chun-Long Fei(费春龙)
School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot match, acoustic holograms pursue the realization of high-resolution complex acoustic fields and gradually tend to high-frequency ultrasound applications. However, conventional continuous phase holograms are limited by three-dimensional (3D) printing size, and the presence of unavoidable small printing errors makes it difficult to achieve acoustic field reconstruction at high frequency accuracy. Here, we present an optimized discrete multi-step phase hologram. It can ensure the reconstruction quality of image with high robustness, and properly lower the requirement for the 3D printing accuracy. Meanwhile, the concept of reconstruction similarity is proposed to refine a measure of acoustic field quality. In addition, the realized complex acoustic field at 20 MHz promotes the application of acoustic holograms at high frequencies and provides a new way to generate high-fidelity acoustic fields.
Keywords:  discrete multi-step phase hologram      econstruction quality      3D printing accuracy      high-fidelity  
Received:  05 July 2023      Revised:  11 August 2023      Accepted manuscript online:  28 August 2023
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.60.Sx (Acoustic holography)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2023M732745), the National Natural Science Foundations of China (Grant Nos. 61974110 and 62104177), the Fundamental Research Funds for the Central Universities, China (Grant Nos. QTZX23022 and JBF211103), and the Cooperation Program of XDU– Chongqing IC Innovation Research Institute (Grant No. CQ IRI-2022CXY-Z07).
Corresponding Authors:  Zhao-Xi Li, Chun-Long Fei     E-mail:  lizhaoxi@xidian.edu.cn;clfei@xidian.edu.cn

Cite this article: 

Meng-Qing Zhou(周梦晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王业成), Juan Zhang(张娟), Dong-Dong Chen(谌东东), Yi Quan(全熠), Yin-Tang Yang(杨银堂), and Chun-Long Fei(费春龙) Discrete multi-step phase hologram for high frequency acoustic modulation 2024 Chin. Phys. B 33 014303

[1] Kruizinga P, Pim van der Meulen, Fedjajevs A, Mastik F, Springeling, Nico de Jong G, Bosch J G and Leus G 2017 Sci. Adv. 3 e1701423
[2] Collins D J, Ma Z C, Han J Y and Ai Y 2017 Lab Chip 17 91
[3] Baudoin M, Thomas J L, Sahely R A, Gerbedoen J C, Gong Z, Sivery A, Matar O B, Smagin N, Favreau P and Vlandas A 2020 Nat. Commun. 11 4244
[4] Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W and Subramanian S 2017 Nat. Commun. 8 14608
[5] Maimbourg G, Houdouin A, Deffieux T, Tanter M and Aubry J F 2018 Phys. Med. Biol. 63 025026
[6] Hirayama R, Martinez Plasencia D, Masuda N and Subramanian S 2019 Nature 575 320
[7] Jiménez-Gambín S, Jiménez N, Benlloch J M and Camarena F 2019 Phys. Rev. Appl. 12 014016
[8] Marzo A, Caleap M and Drinkwater B W 2018 Phys. Rev. Lett. 120 044301
[9] Li J F, Crivoi A, Peng X Y, Shen L, Pu Y J, Fan Z and Cummer S A 2021 Commun. Phys. 4 113
[10] Yang Y, Ma T, Li S N, Zhang Q, Huang J Q, Liu Y F, Zhuang J W, Li Y C, Du X M, Niu L L, Xiao Y, Wang C Z, Cai F Y and Zheng H R 2021 Research 2021 9781394
[11] Lam K H, Hsu H S, Li Y, Lee C Y, Lin A, Zhou Q F and Shung K K 2013 Biotechnol. Bioeng. 110 881
[12] Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B and Subramanian S 2015 Nat. Commun. 6 8661
[13] Marzo A and Drinkwater B W 2019 Proc. Natl. Acad. Sci. USA 116 84
[14] Ochiai Y, Hoshi T and Rekimoto J 2014 PloS One 9 e102525
[15] Hu H J, Zhu X, Wang C H, Li X S, Lee S, Huang Z L, Chen R M, Chen Z Y, Wang C F, Gu Y, Chen Y M, Lei Y S, Zhang T J, Kim N, Guo Y X, Teng Y, Zhou W B, Li Y, Nomoto A, Sternini S, Zhou Q F, Pharr M, Lanza Di Scalea F and Xu S 2018 Sci. Adv. 4 eaar3979
[16] Zhu B P, Fei C L, Wang C, Zhu Y H, Yang X F, Zheng H and Shung K K 2017 ACS Sens. 2 172
[17] Gao H, Gu Z M, Liang B, et al. 2016 Appl. Phys. Lett. 108 073501
[18] Fan Q B, Wang D P, Huo P C, Zhang Z J, Liang Y Z and Xu T 2017 Opt. Express 25 9285
[19] Melde K, Mark A G, Qiu T and Fischer P 2016 Nature 537 518
[20] Brown M D, Cox B T and Treeby B E 2023 Phys. Rev. Appl. 19 044032
[21] Gu Y Y, Chen C Y, Rufo J, Shen C, Wang Z Y, Huang P H, Fu H, Zhang P R, Cummer S A, Tian Z H and Huang T J 2020 ACS Nano 14 14635
[22] Shakya G, Yang T, Gao Y, Fajrial A K, Li B, Ruzzene M and Ding X 2022 Nat. Commun. 13 987
[23] Tamulevičius T, Juodėnas M, Klinavičius T, Paulauskas A, Jankauskas K, Žutautas A and Tamulevičius S 2018 Sci. Rep. 8 14245
[24] Zheng G X, Mïhlenbernd H, Kenney M, Li G X, Zentgraf T and Zhang S 2015 Nat. Nanotechnol. 10 308
[25] Li J X, Kamin S, Zheng G X, Neubrech F, Zhang S and Liu N 2018 Sci. Adv. 4 eaar6768
[26] Fushimi T, Yamamoto K and Ochiai Y 2021 Sci. Rep. 11 12678
[27] Ma Z C, Melde K, Athanassiadis A G, Schau M, Richter H, Qiu T and Fischer P 2020 Nat. Commun. 11 4537
[28] Cox L, Melde K, Croxford A, Fischer P and Drinkwater B W 2019 Phys. Rev. Appl. 12 064055
[29] Melde K, Choi E, Wu Z G, Palagi S, Qiu T and Fischer P 2018 Adv. Mater. 30 1704507
[30] Ma Z C, Holle A W, Melde K, Qiu T, Poeppel K, Kadiri V M and Fischer P 2020 Adv. Mater. 32 1904181
[31] Li Z X, Fei C L, Yang S H, Hou C X, Zhao J X, Li Y and Yang Y T 2022 Adv. Funct. Mater. 32 2209173
[32] Ma Z C, Joh H, Fan D E and Fischer P 2022 Adv. Sci. 9 2104401
[33] Moreno V, Román J F and Salgueiro J R 1997 Am. J. Phys. 65 556
[34] Jin Y B, Kumar R, Poncelet O, Mondain-Monval O and Brunet T 2019 Nat. Commun. 10 143
[35] Vovchuk D, Khobzei M, Filonov D and Ginzburg P 2022 Sci. Rep. 12 2479
[36] Vodo P, Parimi P V, Lu W T and Sridhar S 2005 Appl. Phys. Lett. 86 201108
[37] Habibi M, Foroughi S, Karamzadeh V and Packirisamy M 2022 Nat. Commun. 13 1800
[1] Behaviors of cavitation bubbles driven by high-intensity ultrasound
Chen-Yang Huang(黄晨阳), Fan Li(李凡), Shi-Yi Feng(冯释毅), Cheng-Hui Wang(王成会), Shi Chen(陈时), Jing Hu(胡静), Xin-Rui He(何芯蕊), and Jia-Kai Song(宋家凯). Chin. Phys. B, 2024, 33(2): 024301.
[2] Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators
Yu-Wei Xu(许雨薇), Yi-Jun Guan(管义钧), Cheng-Hao Wu(吴成昊), Yong Ge(葛勇), Qiao-Rui Si(司乔瑞), Shou-Qi Yuan(袁寿其), and Hong-Xiang Sun(孙宏祥). Chin. Phys. B, 2023, 32(12): 124303.
[3] Characteristic analysis of scattering field in two-layer media by Green's function
Ping Zhang(张萍), Zhi-Ying Liu(刘智颖), Shou-Guo Yan(阎守国), Juan Huang(黄娟), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2023, 32(6): 064301.
[4] Bubble nucleation in spherical liquid cavity wrapped by elastic medium
Xian-Mei Zhang(张先梅), Fan Li(李凡), Cheng-Hui Wang(王成会), Jing Hu(胡静), Run-Yang Mo(莫润阳), Zhuang-Zhi Shen(沈壮志), Jian-Zhong Guo(郭建中), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(6): 064303.
[5] Effect of magnetic field on expansion of ferrofluid-encapsulated microbubble
Zhiwei Du(杜芷玮), Fan Li(李凡), Ruiqi Pan(潘瑞琪), Runyang Mo(莫润阳), and Chenghui Wang(王成会). Chin. Phys. B, 2023, 32(6): 064302.
[6] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[7] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[8] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[9] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[12] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[13] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[14] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[15] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
No Suggested Reading articles found!