Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080306    DOI: 10.1088/1674-1056/ad51f6
GENERAL Prev   Next  

Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering

Chun Zhou(周淳)1,2, Yan-Mei Zhao(赵燕美)1,2,†, Xiao-Liang Yang(杨晓亮)1,2, Yi-Fei Lu(陆宜飞)1,2, Yu Zhou(周雨)1,2, Xiao-Lei Jiang(姜晓磊)1,2, Hai-Tao Wang(汪海涛)1,2, Yang Wang(汪洋)1,2, Jia-Ji Li(李家骥)1,2, Mu-Sheng Jiang(江木生)1,2, Xiang Wang(汪翔)1,2, Hai-Long Zhang(张海龙)1,2, Hong-Wei Li(李宏伟)1,2, and Wan-Su Bao(鲍皖苏)1,2,‡
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China;
2 Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The reference-frame-independent (RFI) quantum key distribution (QKD) is suitable for satellite-based links by removing the active alignment on the reference frames. However, how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links. In this paper, based on the mathematical model for characterizing beam wandering, we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering. Our simulation results show that the performance of RFI-QKD is better than the Bennett-Brassard 1984 (BB84) QKD with beam wandering in asymptotic case. Furthermore, the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account. Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.
Keywords:  quantum key distribution      satellite-to-ground      beam wandering  
Received:  17 April 2024      Revised:  29 May 2024      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261, 62101597, 61605248, and 61675235), the National Key Research and Development Program of China (Grant No. 2020YFA0309702), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410534 and 202300410532), and the Fund of the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:  Yan-Mei Zhao, Wan-Su Bao     E-mail:  zym@qiclab.cn;bws@qiclab.cn

Cite this article: 

Chun Zhou(周淳), Yan-Mei Zhao(赵燕美), Xiao-Liang Yang(杨晓亮), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Xiao-Lei Jiang(姜晓磊), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Mu-Sheng Jiang(江木生), Xiang Wang(汪翔), Hai-Long Zhang(张海龙), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏) Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering 2024 Chin. Phys. B 33 080306

[1] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Takeoka M, Guha S and Wilde M M 2014 Nat. Commun. 5 5235
[4] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043
[5] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, et al. 2023 Phys. Rev. Lett. 130 210801
[6] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, et al. 2022 Nat. Photon. 16 154
[7] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[8] Ma X F, Zeng P and Zhou H Y 2018 Phys. Rev. X 8 031043
[9] Wang X B, Yu Z W, Hu and X L 2018 Phys. Rev. A 98 062323
[10] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, et al. 2017 PRX Quantum 3 020315
[11] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[12] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[13] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, et al. 1996 Phys. Rev. Lett. 76 722
[14] Duan L M, Lukin M D, Cirac J L and Zoller P 2001 Nature 414 413
[15] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[16] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[17] Yang S J, Wang X J, Bao X H and Pan J W 2016 Nat. Photon. 10 381
[18] Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, et al. 2015 Phys. Rev. Lett. 115 040502
[19] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, et al. 2017 Nature 549 43
[20] Kimble H J 2008 Nature 453 1023
[21] Wehner S, Elkouss D and Hanson R 2018 Science 362 9288
[22] Wang S, Chen W, Yin Z Q, Li H W, He D Y, et al. 2014 Opt. Express 22 21739
[23] Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, et al. 2021 Nature 589 214
[24] Sidhu J S, Joshi S K, Gündoǧan M, Brougham T, Lowndes D, et al. 2021 IET Quantum Communication 2 182
[25] Li Y, Liao S K, Cao Y, Ren J G, Liu W Y, et al. 2022 Optica 9 933
[26] Yin J, Li Y H, Liao S K, Yang M, Cao Y, et al. 2020 Nature 582 501
[27] Yin J, Cao Y, Li Y H, Ren J G, Liao S K, et al. 2017 Phys. Rev. Lett. 119 200501
[28] Li B, Cao Y, Li Y H, Cai W Q, Liu W Y, et al. 2022 Phys. Rev. Lett. 128 170501
[29] Ecker S, Pseiner J, Piris J and Bohmann M 2023 International Conference on Space Optics-ICSO 12777 925
[30] Laing A, Scarani V, Rarity J G and O’Brien J L 2010 Phys. Rev. A 82 012304
[31] Wabnig J, Bitauld D, Li H W, Laing A, O’brien J L, et al. 2013 New J. Phys. 15 073001
[32] Chun H, Choi I, Faulkner G, Clarke L and Barber B, et al. 2017 Opt. Express 25 6784
[33] Xue Y, Shi L, Wei J H, Yu L L, Yu H C, et al. 2020 Int. J. Theor. Phys. 59 3299
[34] Xue Y, Shi L, Chen W, Yin Z Q, Fan Yuan G J, et al. 2020 Phys. Rev. A 102 062602
[35] Wang W Y, Xu F H and Lo H K 2018 Phys. Rev. A 97 032337
[36] Vasylyev D, Semenov A A, Vogel W, Günthner K, Thurn A, et al. 2017 Phys. Rev. A 96 043856
[37] Liorni C, Kampermann H and Bruß D 2019 New J. Phys. 21 093055
[38] Chen H, Wang J P, Tang B Y, Li Z H, Liu B, et al. 2020 Opt. Lett 45 3022
[39] Scriminich A, Foletto G, Picciariello F, Stanco A, Vallone G, et al. 2022 Quantum Sci. Technol. 7 045029
[40] Lu Q H, Wang F X, Huang K, Wu X, Wang Z H, et al. 2022 Phys. Rev. Appl. 17 034045
[41] Henniger H and Wilfert O 2010 Radioengineering 19 2
[42] Zhu X M and Kahn J M 2002 IEEE Trans. Commun. 50 1293
[43] Hulea M, Ghassemlooy Z, Rajbhandari S and Tang X 2014 J. Light. Technol. 32 1323
[44] Milonni P W, Carter J H, Peterson C G and Hughes R J 2004 J. Opt. B: Quantum Semiclassical Opt. 6 S742
[45] Semenov A A and Vogel W 2009 Phys. Rev. A 80 021802
[46] Vasylyev D Y, Semenov A A and Vogel W 2012 Phys. Rev. Lett. 108 220501
[47] Vasylyev D, Semenov A A and Vogel W 2016 Phys. Rev. Lett. 117 090501
[48] Vasylyev D, Vogel W and Moll F 2019 Phys. Rev. A 99 053830
[49] Vasylyev D, Vogel W and Semenov A A 2018 Phys. Rev. A 97 063852
[50] Liang W T and Jiao R Z 2020 New J. Phys. 22 083074
[51] Dong Q, Huang G Q, Cui W and Jiao R Z 2021 Quantum Sci. Technol. 7 015014
[52] Derkach I and Usenko V 2023 International Conference on Space Optics-ICSO 12777 pp. 1089-1103
[53] Hu H Y, Zhong H, Ye W and Guo Y 2022 Commun. Theor. Phys. 74 125102
[54] Dequal D, Trigo V L, Roman R V, Vallone G, Villoresi P, et al. 2021 NPJ Quantum Inf. 7 3
[55] Wang S Y, Huang P, Wang T and Zeng G H 2018 New J. Phys. 20 083037
[56] Klen M and Semenov A A 2023 Phys. Rev. A 108 033718
[57] Pirandola S 2021 Phys. Rev. Res. 3 023130
[58] Bohren C F and Huffman D R 2008 Absorption and scattering of light by small particles (Chichester: John Wiley and Sons)
[59] Baskov R A and Chumak O O 2020 J. Opt. 22 105603
[60] Baskov R 2022 Phys. Rev. A 105 063713
[61] Andrews L C and Phillips R L 2005 Laser Beam Propagation Through Random Media: Second Edition (Bellingham: SPIE-International Society for Optical Engineering)
[62] Hufnagel R E and Stanley N R 1964 JOSA 54 52
[63] Valley G C 1980 Appl. Opt. 19 574
[64] Sidhu J S, Brougham T, McArthur D, Pousa, Roberto G and Oi Daniel K L 2022 NPJ Quantum Inf. 8 18
[65] Christandl M, König R and Renner R 2009 Phys. Rev. Lett. 102 020504
[66] Sheridan L, Le T P and Scarani V 2010 New J. Phys. 12 123019
[67] Wang X B 2005 Phys. Rev. Lett. 94 230503
[68] Lo H K, and Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[69] Ma X F, Qi B Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[70] Chernoff H 1952 Ann. Math. Stat. 493
[71] Curty M, Xu F H, Cui W, Lim C C W, Tamaki K, et al. 2014 Nat. Commun. 5 3732
[72] Zhang Z, Zhao Q, Razavi M and Ma X F 2017 Phys. Rev. A 95 012333
[73] Jiang X L, Wang Y, Li J J, Lu Y F, Hao C P, et al. 2023 Opt. Express 31 9196
[1] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[2] Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(2): 020313.
[3] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[4] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[5] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[6] Security of the traditional quantum key distribution protocols with finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[7] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[8] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[9] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[10] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[11] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[12] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[13] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[14] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[15] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
No Suggested Reading articles found!