|
|
Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering |
Chun Zhou(周淳)1,2, Yan-Mei Zhao(赵燕美)1,2,†, Xiao-Liang Yang(杨晓亮)1,2, Yi-Fei Lu(陆宜飞)1,2, Yu Zhou(周雨)1,2, Xiao-Lei Jiang(姜晓磊)1,2, Hai-Tao Wang(汪海涛)1,2, Yang Wang(汪洋)1,2, Jia-Ji Li(李家骥)1,2, Mu-Sheng Jiang(江木生)1,2, Xiang Wang(汪翔)1,2, Hai-Long Zhang(张海龙)1,2, Hong-Wei Li(李宏伟)1,2, and Wan-Su Bao(鲍皖苏)1,2,‡ |
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China; 2 Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The reference-frame-independent (RFI) quantum key distribution (QKD) is suitable for satellite-based links by removing the active alignment on the reference frames. However, how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links. In this paper, based on the mathematical model for characterizing beam wandering, we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering. Our simulation results show that the performance of RFI-QKD is better than the Bennett-Brassard 1984 (BB84) QKD with beam wandering in asymptotic case. Furthermore, the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account. Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.
|
Received: 17 April 2024
Revised: 29 May 2024
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261, 62101597, 61605248, and 61675235), the National Key Research and Development Program of China (Grant No. 2020YFA0309702), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410534 and 202300410532), and the Fund of the Anhui Initiative in Quantum Information Technologies. |
Corresponding Authors:
Yan-Mei Zhao, Wan-Su Bao
E-mail: zym@qiclab.cn;bws@qiclab.cn
|
Cite this article:
Chun Zhou(周淳), Yan-Mei Zhao(赵燕美), Xiao-Liang Yang(杨晓亮), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Xiao-Lei Jiang(姜晓磊), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Mu-Sheng Jiang(江木生), Xiang Wang(汪翔), Hai-Long Zhang(张海龙), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏) Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering 2024 Chin. Phys. B 33 080306
|
[1] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7 [2] Ekert A K 1991 Phys. Rev. Lett. 67 661 [3] Takeoka M, Guha S and Wilde M M 2014 Nat. Commun. 5 5235 [4] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043 [5] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, et al. 2023 Phys. Rev. Lett. 130 210801 [6] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, et al. 2022 Nat. Photon. 16 154 [7] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400 [8] Ma X F, Zeng P and Zhou H Y 2018 Phys. Rev. X 8 031043 [9] Wang X B, Yu Z W, Hu and X L 2018 Phys. Rev. A 98 062323 [10] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, et al. 2017 PRX Quantum 3 020315 [11] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932 [12] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287 [13] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, et al. 1996 Phys. Rev. Lett. 76 722 [14] Duan L M, Lukin M D, Cirac J L and Zoller P 2001 Nature 414 413 [15] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891 [16] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417 [17] Yang S J, Wang X J, Bao X H and Pan J W 2016 Nat. Photon. 10 381 [18] Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, et al. 2015 Phys. Rev. Lett. 115 040502 [19] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, et al. 2017 Nature 549 43 [20] Kimble H J 2008 Nature 453 1023 [21] Wehner S, Elkouss D and Hanson R 2018 Science 362 9288 [22] Wang S, Chen W, Yin Z Q, Li H W, He D Y, et al. 2014 Opt. Express 22 21739 [23] Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, et al. 2021 Nature 589 214 [24] Sidhu J S, Joshi S K, Gündoǧan M, Brougham T, Lowndes D, et al. 2021 IET Quantum Communication 2 182 [25] Li Y, Liao S K, Cao Y, Ren J G, Liu W Y, et al. 2022 Optica 9 933 [26] Yin J, Li Y H, Liao S K, Yang M, Cao Y, et al. 2020 Nature 582 501 [27] Yin J, Cao Y, Li Y H, Ren J G, Liao S K, et al. 2017 Phys. Rev. Lett. 119 200501 [28] Li B, Cao Y, Li Y H, Cai W Q, Liu W Y, et al. 2022 Phys. Rev. Lett. 128 170501 [29] Ecker S, Pseiner J, Piris J and Bohmann M 2023 International Conference on Space Optics-ICSO 12777 925 [30] Laing A, Scarani V, Rarity J G and O’Brien J L 2010 Phys. Rev. A 82 012304 [31] Wabnig J, Bitauld D, Li H W, Laing A, O’brien J L, et al. 2013 New J. Phys. 15 073001 [32] Chun H, Choi I, Faulkner G, Clarke L and Barber B, et al. 2017 Opt. Express 25 6784 [33] Xue Y, Shi L, Wei J H, Yu L L, Yu H C, et al. 2020 Int. J. Theor. Phys. 59 3299 [34] Xue Y, Shi L, Chen W, Yin Z Q, Fan Yuan G J, et al. 2020 Phys. Rev. A 102 062602 [35] Wang W Y, Xu F H and Lo H K 2018 Phys. Rev. A 97 032337 [36] Vasylyev D, Semenov A A, Vogel W, Günthner K, Thurn A, et al. 2017 Phys. Rev. A 96 043856 [37] Liorni C, Kampermann H and Bruß D 2019 New J. Phys. 21 093055 [38] Chen H, Wang J P, Tang B Y, Li Z H, Liu B, et al. 2020 Opt. Lett 45 3022 [39] Scriminich A, Foletto G, Picciariello F, Stanco A, Vallone G, et al. 2022 Quantum Sci. Technol. 7 045029 [40] Lu Q H, Wang F X, Huang K, Wu X, Wang Z H, et al. 2022 Phys. Rev. Appl. 17 034045 [41] Henniger H and Wilfert O 2010 Radioengineering 19 2 [42] Zhu X M and Kahn J M 2002 IEEE Trans. Commun. 50 1293 [43] Hulea M, Ghassemlooy Z, Rajbhandari S and Tang X 2014 J. Light. Technol. 32 1323 [44] Milonni P W, Carter J H, Peterson C G and Hughes R J 2004 J. Opt. B: Quantum Semiclassical Opt. 6 S742 [45] Semenov A A and Vogel W 2009 Phys. Rev. A 80 021802 [46] Vasylyev D Y, Semenov A A and Vogel W 2012 Phys. Rev. Lett. 108 220501 [47] Vasylyev D, Semenov A A and Vogel W 2016 Phys. Rev. Lett. 117 090501 [48] Vasylyev D, Vogel W and Moll F 2019 Phys. Rev. A 99 053830 [49] Vasylyev D, Vogel W and Semenov A A 2018 Phys. Rev. A 97 063852 [50] Liang W T and Jiao R Z 2020 New J. Phys. 22 083074 [51] Dong Q, Huang G Q, Cui W and Jiao R Z 2021 Quantum Sci. Technol. 7 015014 [52] Derkach I and Usenko V 2023 International Conference on Space Optics-ICSO 12777 pp. 1089-1103 [53] Hu H Y, Zhong H, Ye W and Guo Y 2022 Commun. Theor. Phys. 74 125102 [54] Dequal D, Trigo V L, Roman R V, Vallone G, Villoresi P, et al. 2021 NPJ Quantum Inf. 7 3 [55] Wang S Y, Huang P, Wang T and Zeng G H 2018 New J. Phys. 20 083037 [56] Klen M and Semenov A A 2023 Phys. Rev. A 108 033718 [57] Pirandola S 2021 Phys. Rev. Res. 3 023130 [58] Bohren C F and Huffman D R 2008 Absorption and scattering of light by small particles (Chichester: John Wiley and Sons) [59] Baskov R A and Chumak O O 2020 J. Opt. 22 105603 [60] Baskov R 2022 Phys. Rev. A 105 063713 [61] Andrews L C and Phillips R L 2005 Laser Beam Propagation Through Random Media: Second Edition (Bellingham: SPIE-International Society for Optical Engineering) [62] Hufnagel R E and Stanley N R 1964 JOSA 54 52 [63] Valley G C 1980 Appl. Opt. 19 574 [64] Sidhu J S, Brougham T, McArthur D, Pousa, Roberto G and Oi Daniel K L 2022 NPJ Quantum Inf. 8 18 [65] Christandl M, König R and Renner R 2009 Phys. Rev. Lett. 102 020504 [66] Sheridan L, Le T P and Scarani V 2010 New J. Phys. 12 123019 [67] Wang X B 2005 Phys. Rev. Lett. 94 230503 [68] Lo H K, and Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504 [69] Ma X F, Qi B Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326 [70] Chernoff H 1952 Ann. Math. Stat. 493 [71] Curty M, Xu F H, Cui W, Lim C C W, Tamaki K, et al. 2014 Nat. Commun. 5 3732 [72] Zhang Z, Zhao Q, Razavi M and Ma X F 2017 Phys. Rev. A 95 012333 [73] Jiang X L, Wang Y, Li J J, Lu Y F, Hao C P, et al. 2023 Opt. Express 31 9196 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|