Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 027302    DOI: 10.1088/1674-1056/ad04c5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition

Renxiang Cheng(程任翔)1,2, Miao Yu(于苗)1, Hong Wang(汪洪)1, Deliang Cao(曹德亮)1, Xingao Li(李兴鳌)1,†, Fenghua Qi(戚凤华)3,‡, and Xingfei Zhou(周兴飞)1,§
1 New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China;
3 School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
Abstract  We investigate the chiral edge states-induced Josephson current-phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential. By solving the Bogoliubov-de Gennes equation, a $\varphi_{0}$ Josephson junction is induced in the coaction of the off-resonant circularly polarized light and the staggered sublattice potential, which arises from the fact that the center of-mass wave vector of Cooper pair becomes finite and the opposite center of-mass wave vector to compensate is lacking in the nonsuperconducting region. Interestingly, when the direction of polarization of light is changed, $-\varphi_{0}$ to $\varphi_{0}$ transition generates, which generalizes the concept of traditional $0$-$\pi$ transition. Our findings provide a purely optical way to manipulate a phase-controllable Josephson device and guidelines for future experiments to confirm the presence of graphene-based $\varphi_{0}$ Josephson junction.
Keywords:  graphene      circularly polarized light      staggered sublattice potential      $\varphi_{0}$ Josephson junction  
Received:  13 July 2023      Revised:  08 September 2023      Accepted manuscript online:  19 October 2023
PACS:  73.22.Pr (Electronic structure of graphene)  
  73.20.At (Surface states, band structure, electron density of states)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  85.25.-j (Superconducting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104232, 11805103, and 11804167), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20190137 and BK20180739), the Fundamental Research Funds for the Central Universities (Grant Nos. 020414380195 and B230201042), the Jit-b Project (Grant No. 201831), and the Natural Science Fund of Nanjing University of Posts and Telecommunications (Grant No. NY222163).
Corresponding Authors:  Xingao Li, Fenghua Qi, Xingfei Zhou     E-mail:  lixa@njupt.edu.cn;qifenghua@njxzc.edu.cn;zxf@njupt.edu.cn

Cite this article: 

Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞) Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition 2024 Chin. Phys. B 33 027302

[1] Wallace P R 1947 Phys. Rev. 71 622
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[5] Zeb M A, Sabeeh K and Tahir M 2008 Phys. Rev. B 78 165420
[6] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[7] Rozhkov A, Giavaras G, Bliokh Y P, Freilikher V and Nori F 2011 Phys. Rep. 503 77
[8] Zhou X, Wu Z, Bai Y, Wang Q, Zhu Z, Yan W and Xu Y 2022 Chin. Phys. B 31 047301
[9] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[10] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[11] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[12] Qiao Z, Tse W K, Jiang H, Yao Y and Niu Q 2011 Phys. Rev. Lett. 107 256801
[13] Zhai X and Jin G 2014 Phys. Rev. B 89 235416
[14] Wang W, Lü X and Xie H 2021 Chin. Phys. B 30 066701
[15] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[16] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[17] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405
[18] Yankowitz M, Chen S, Polshyn H, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 11059
[19] García de Abajo F J 2013 Science 339 917
[20] Koppens F, Mueller T, Avouris P, Ferrari A, Vitiello M and Polini M 2014 Nat. Nanotechnol. 9 780
[21] Wolf E L 2014 Graphene: A New Paradigm in Condensed Matter and Device Physics (Oxford: Oxford University Press)
[22] Young A F and Kim P 2011 Annual Review of Condensed Matter Physics 2 101
[23] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[24] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[25] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[26] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[27] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[28] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Castro Neto A H 2016 Nat. Rev. Mater. 1 16061
[29] Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P and Rao C N R 2013 ACS Nano 7 4879
[30] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[31] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[32] Josephson B D 1962 Phys. Lett. 1 251
[33] Anderson P W and Rowell J M 1963 Phys. Rev. Lett. 10 230
[34] Ryazanov V V, Oboznov V A, Rusanov A Yu, Veretennikov A V, Golubov A A and Aarts J 2001 Phys. Rev. Lett. 86 2427
[35] Buzdin A I 2005 Rev. Mod. Phys. 77 935
[36] Yamashita T, Tanikawa K, Takahashi S and Maekawa S 2005 Phys. Rev. Lett. 95 097001
[37] Yokoyama T, Eto M and Nazarov Y V 2014 Phys. Rev. B 89 195407
[38] Nesterov K N, Houzet M and Meyer J S 2016 Phys. Rev. B 93 174502
[39] Dolcini F, Houzet M and Meyer J S 2015 Phys. Rev. B 92 035428
[40] Wang J, Hao L and Liu J F 2016 Phys. Rev. B 93 155405
[41] Alidoust M and Hamzehpour H 2017 Phys. Rev. B 96 165422
[42] Zhou X and Jin G 2107 Phys. Rev. B 95 195419
[43] Assouline A, Feuillet-Palma C, Bergeal N, Zhang T, Mottaghizadeh A, Zimmers A, Lhuillier E, Eddrie M, Atkinson P, Aprili M and Aubin H 2019 Nat. Commun. 10 126
[44] Xu Y, Fu P H, Chen L, Liu J F, Wang J and Xu H 2022 Phys. Rev. B 105 075409
[45] Padurariu C and Nazarov Y V 2010 Phys. Rev. B 81 144519
[46] Reynoso A A, Usaj G, Balseiro C A, Feinberg D and Avignon M 2012 Phys. Rev. B 86 214519
[47] Gingrich E C, Niedzielski B M, Glick J A, Wang Y, Miller D L, Loloee R, Pratt Jr W P and Birge N O 2016 Nat. Phys. 12 564
[48] Strambini E, Iorio A, Durante O, Citro R, Sanz-Fernández C, Guarcello C, Tokatly I V, Braggio A, Rocci M, Ligato N, Zannier V, Sorba L, Bergeret F S and Giazotto F 2020 Nat. Nanotechnol. 15 656
[49] Titov M and Beenakker C W J 2006 Phys. Rev. B 74 041401
[50] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
[51] Linder J, Yokoyama T, Huertas-Hernando D and Sudbo A 2008 Phys. Rev. Lett. 100 187004
[52] Jeong D, Choi J H, Lee G H, Jo S, Doh Y J and Lee H J 2011 Phys. Rev. B 83 094503
[53] Wei Y J, Liu H L, Wang J and Liu J F 2022 Phys. Rev. B 106 165419
[54] Xie Y M, Efetov D K and Law K T 2022 Phys. Rev. Res. 5 023029
[55] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108
[56] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38
[57] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[58] Xu Y and Jin G 2017 Phys. Rev. B 95 155425
[59] Beenakker C W J 1991 Phys. Rev. Lett. 67 3836
[60] nnunziata G, Enoksen H, Linder J, Cuoco M, Noce C and Sudbo A 2011 Phys. Rev. B 83 144520
[1] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[2] Actively tuning anisotropic light-matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene
Kun Zhou(周昆), Yang Hu(胡杨), Biyuan Wu(吴必园), Xiaoxing Zhong(仲晓星), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2024, 33(4): 047103.
[3] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene-silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[4] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[5] Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate
Cai Zhou(周偲), Shaokang Yuan(袁少康), Dengyu Zhu(朱登玉), Yuming Bai(白宇明), Tao Wang(王韬), Fufu Liu(刘福福), Lulu Pan(潘禄禄), Cunfang Feng(冯存芳), Bohan Zhang(张博涵), Daping He(何大平), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2024, 33(3): 037506.
[6] Valley transport in Kekulé structures of graphene
Juan-Juan Wang(王娟娟) and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017801.
[7] Valley filtering and valley-polarized collective modes in bulk graphene monolayers
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰). Chin. Phys. B, 2024, 33(1): 017203.
[8] Valley-dependent transport in a mescoscopic twisted bilayer graphene device
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017205.
[9] Emergence of correlations in twisted monolayer-trilayer graphene heterostructures
Zhang Zhou(周璋), Kenji Watanabe, Takashi Taniguchi, Xiao Lin(林晓), Jinhai Mao(毛金海), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(9): 097203.
[10] Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate
Yi Biao(表奕), Hong-Liang Lu(路红亮), Hao Peng(彭浩), Zhi-Peng Song(宋志朋), Hui Guo(郭辉), and Xiao Lin(林晓). Chin. Phys. B, 2023, 32(9): 098102.
[11] Rashba spin-orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential
Liang Chen(陈亮), Feng Li(李峰), and Xiao-Ming Ding(丁晓明). Chin. Phys. B, 2023, 32(8): 087103.
[12] Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference
Wei Yu(余炜), Xiao Guo(郭潇), Yuwen Cai(蔡煜文), Xiaotian Yu(俞晓天), and Wenjie Liang(梁文杰). Chin. Phys. B, 2023, 32(7): 077202.
[13] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[14] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[15] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
No Suggested Reading articles found!