Abstract The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD) and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate the nonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation before approximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic mode decomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, a novel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid of error data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy. Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11871400 and 11971386) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JM1019).
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰) Constructing reduced model for complex physical systems via interpolation and neural networks 2021 Chin. Phys. B 30 030204
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.