|
|
Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam |
Ziwen Chen(陈紫雯)1,2,3,4, Yan Zhang(张焱)1,2,3,4,†, Ping Ma(马平)1,2,3,4,‡, Zhongtang Xu(徐中堂)5,§, Yulong Li(李宇龙)1,2,3,4, Yue Wang(王越)1,2,3,4, Jianming Lu(路建明)1,2,3,4, Yanwei Ma(马衍伟)5, and Zizhao Gan(甘子钊)1,2,3,4 |
1 Applied Superconductivity Research Center, Peking University, Beijing 100871, China; 2 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China; 3 Institute of Condensed Matter Physics, School of Physics, Peking University, Beijing 100871, China; 4 Yangtze Delta Institute of Optoelectronics, Peking University, Beijing 100871, China; 5 Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices, therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance. In this work, we have successfully fabricated Josephson junctions from Co-doped BaFe2As2 thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam (FHIB). The electrical transport properties were investigated for junctions fabricated with various He+ irradiation doses. The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K, and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He+ irradiation. Significant Jc suppression by more than two orders of magnitude can be achieved by increasing the He+ irradiation dose, which is advantageous for the realization of low noise ion pnictide thin film devices. Clear Shapiro steps are observed under 10 GHz microwave irradiation. The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe2As2 Josephson junction with high reproducibility using the FHIB technique, laying the foundation for future investigating the mechanism of iron-based superconductors, and also the further implementation in various superconducting electronic devices.
|
Received: 29 December 2023
Revised: 14 January 2024
Accepted manuscript online: 24 January 2024
|
PACS:
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
85.25.Cp
|
(Josephson devices)
|
|
07.78.+s
|
(Electron, positron, and ion microscopes; electron diffractometers)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFF01014706 and 2017YFC0601901) and the National Natural Science Foundation of China (Grant Nos. 61571019 and 52177026). The authors would like to acknowledge the valuable contributions of Lifeng Tian, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, for his help in use of helium ion microscope; and Ziqing Chen for the artistic drawing of the Ba122:Co junction fabricated by a focused helium ion beam. |
Corresponding Authors:
Yan Zhang, Ping Ma, Zhongtang Xu
E-mail: zhang_yan@pku.edu.cn;maping@pku.edu.cn;ztxu@mail.iee.ac.cn
|
Cite this article:
Ziwen Chen(陈紫雯), Yan Zhang(张焱), Ping Ma(马平), Zhongtang Xu(徐中堂), Yulong Li(李宇龙), Yue Wang(王越), Jianming Lu(路建明), Yanwei Ma(马衍伟), and Zizhao Gan(甘子钊) Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam 2024 Chin. Phys. B 33 047405
|
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [2] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [3] Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538 [4] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262 [5] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004 [6] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215 [7] Scalapino D J 2012 Rev. Mod. Phys. 84 1383 [8] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97 [9] Zhao J, Huang Q, de la Cruz C, Li S L, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L and Dai P C 2008 Nat. Mater. 7 953 [10] Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X 2015 Phys. Rev. B 92 064515 [11] Mu G, Zeng B, Cheng P, Wang Z S, Fang L, Shen B, Shan L, Ren C and Wen H H 2010 Chin. Phys. Lett. 27 037402 [12] Wang D, Lu H Y and Wang Q H 2013 Chin. Phys. Lett. 30 077404 [13] Chen G F, Li Z, Li G, Hu W Z, Dong J, Zhou J, Zhang X D, Zheng P, Wang N L and Luo J L 2008 Chin. Phys. Lett. 25 3403 [14] Zhao L, Liu H Y, Zhang W T, Meng J Q, Jia X W, Liu G D, Dong X L, Chen G F, Luo J L, Wang N L, Lu W, Wang G L, Zhou Y, Zhu Y, Wang X Y, Xu Z Y, Chen C T and Zhou X J 2008 Chin. Phys. Lett. 25 4402 [15] Mazin, II, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003 [16] Nakamura H, Machida M, Koyama T and Hamada N 2009 J. Phys. Soc. Jpn. 78 123712 [17] Mazin, II and Schmalian J 2009 Phys. C 469 614 [18] Johnston D C 2010 Advances in Physics 59 803 [19] Huang Y L, Feng Z P, Ni S L, Li J, Hu W, Liu S B, Mao Y Y, Zhou H X, Zhou F, Jin K, Wang H B, Yuan J, Dong X L and Zhao Z X 2017 Chin. Phys. Lett. 34 077404 [20] Ma Y W 2012 Superconductor Science & Technology 25 113001 [21] Katase T, Ishimaru Y, Tsukamoto A, Hiramatsu H, Kamiya T, Tanabe K and Hosono H 2010 Supercond. Sci. Technol. 23 082001 [22] Wang T, Yu A, Li C, Liu Y, Peng W, Jiang D and Mu G 2023 Scientia Sinica:Physica, Mechanica et Astronomica 53 127414 [23] Zhang X H, Oh Y S, Liu Y, Yan L Q, Kim K H, Greene R L and Takeuchi I 2009 Phys. Rev. Lett. 102 147002 [24] Katase T, Ishimaru Y, Tsukamoto A, Hiramatsu H, Kamiya T, Tanabe K and Hosono H 2010 Appl. Phys. Lett. 96 142507 [25] Larbalestier D, Gurevich A, Feldmann D M and Polyanskii A 2001 Nature 414 368 [26] Katase T, Ishimaru Y, Tsukamoto A, Hiramatsu H, Kamiya T, Tanabe K and Hosono H 2011 Nat. Commun. 2 409 [27] Hilgenkamp H and Mannhart J 2002 Rev. Mod. Phys. 74 485 [28] Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C and Dynes R C 2015 Nat. Nanotechnol. 10 598 [29] Kasaei L, Melbourne T, Manichev V, Feldman L C, Gustafsson T, Chen K, Xi X X and Davidson B A 2018 AIP Adv. 8 075020 [30] Wang Y T, LeFebvre J C, Cho E Y, McCoy S J, Li H, Gu G D, Kadowaki K and Cybart S A 2021 IEEE Trans. Appl. Supercond 31 1100104 [31] Kano M, Kohama Y, Graf D, Balakirev F, Sefat A S, McGuire M A, Sales B C, Mandrus D and Tozer S W 2009 J. Phys. Soc. Jpn. 78 084719 [32] Kasaei L, Manichev V, Li M, Feldman L C, Gustafsson T, Colantes Y, Hellstrom E, Demir M, Acharya N, Bhattarai P, Chen K, Xi X X and Davidson B A 2019 Supercond. Sci. Technol. 32 095009 [33] Yuan P, Xu Z, Li C, Quan B, Li J, Gu C and Ma Y 2018 Supercond. Sci. Technol. 31 025002 [34] Chen Z W, Li Y L, Zhu R, Xu J, Xu T Q, Yin D L, Cai X W, Wang Y, Lu J M, Zhang Y and Ma P 2022 Chin. Phys. Lett. 39 077402 [35] Muller B, Karrer M, Limberger F, Becker M, Schroppel B, Burkhardt C J, Kleiner R, Goldobin E and Koelle D 2019 Phys. Rev. Appl. 11 044082 [36] Vale L R, Ono R H and Rudman D A 1997 IEEE Trans. Appl. Supercond. 7 3193 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|