CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene |
Yan Huang(黄妍) and Tao Zhou(周涛)† |
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field. In this study, we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system. By developing a theoretical model, we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing, p+ip-wave anti-parallel spin pairing and d+id-wave pairing symmetry. Our results confirm that the magnetic field is indeed essential for generating the superconductivity. We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system. The numerical calculations of the energy band structure, zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.
|
Received: 13 September 2023
Revised: 20 November 2023
Accepted manuscript online: 28 November 2023
|
PACS:
|
74.70.Wz
|
(Carbon-based superconductors)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074130) and the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515012340). |
Corresponding Authors:
Tao Zhou
E-mail: tzhou@scnu.edu.cn
|
Cite this article:
Yan Huang(黄妍) and Tao Zhou(周涛) Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene 2024 Chin. Phys. B 33 047403
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [3] Apell S P, Hanson G and Hagglund C 2012 arXiv:1201.3071 [4] Ghazaryan A, Holder T, Berg E and Serbyn M 2023 Phys. Rev. B 107 104502 [5] Awoga O A, Lothman T and Black-Schaffer A M 2023 Phys. Rev. B 108 144504 [6] Lu D C, Wang T, Chatterjee S and You Y 2022 Phys. Rev. B 106 155115 [7] Shin J, Chittari B L, Jang Y, Min H and Jung J 2022 Phys. Rev. B 105 245124 [8] Zhang Y, Polski R, Thomson A, Lantagne-Hurtubise E, Lewandowski C, Zhou H, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2023 Nature 613 268 [9] Holleis L, Patterson C L, Zhang Y, Yoo H M, Zhou H, Taniguchi T, Watanabe K, Nadj-Perge S and Young A F 2023 arXiv.2303.00742 [10] Assouline A, Wang T, Zhou H, Cohen L A, Yang F, Zhang R, Taniguchi T, Watanabe K, Mong R S K, Zaletel M P and Young A F 2024 Phys. Rev. Lett. 132 046603 [11] Lin J X, Wang Y, Zhang N J, Watanabe K, Taniguchi T, Fu L and Li J I A 2023 arXiv.2302.04261 [12] Niu R, Li Z, Han X, Qu Z, Ding D, Wang Z, Liu Q, Liu T, Han C, Watanabe K, Taniguchi T, Wu M, Ren Q, Wang X, Hong J, Mao J, Han Z, Liu K, Gan Z and Lu J 2022 Nat. Commun. 613 6241 [13] Chou Y Z and Wu F and Das Sarma S 2022 Phys. Rev. B 106 L180502 [14] Xie M and Das Sarma S 2023 Phys. Rev. B 107 L201119 [15] Curtis J B, Poniatowski N R, Xie Y, Yacoby A, Demler E and Narang P 2023 Phys. Rev. Lett. 130 196001 [16] Xie Y M, Lantagne-Hurtubise E, Young A F, Nadj-Perge S and Alicea J 2023 Phys. Rev. Lett. 131 146601 [17] Dong Z, Davydova M, Ogunnaike O and Levitov L 2023 Phys. Rev. B 107 075108 [18] Wagner G, Kwan Y H, Bultinck N, Simon S H and Parameswaran S A 2023 arXiv.2302.00682 [19] Ren Y N, Cheng Q, Sun Q F and He L 2022 Phys. Rev. Lett. 128 206805 [20] Le N D and Jolicoeur T 2023 Phys. Rev. B 107 125129 [21] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [22] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubono, S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [23] Tonnoir C, Kimouche A, Coraux J, Magaud L, Delsol B, Gilles B and Chapelier C 2013 Phys. Rev. Lett. 111 246805 [24] Chichinadze D V, Classen L and Chubukov A V 2020 Phys. Rev. B 101 224513 [25] Linder J, Black-Schaffer A M, Yokoyama T, Doniach S and Sudbo A 2009 Phys. Rev. B 80 094522 [26] Ichinokura S, Sugawara K, Takayama A, Takahashi T and Hasegawa S 2016 ACS Nano 10 2761 [27] Chapman J, Su Y, Howard C, Kundys D, Grigorenko A, Guinea F, Geim A, Grigorieva I and Nair R 2016 Sci. Rep. 6 1 [28] Di Bernardo A, Millo O, Barbone M, Alpern H, Kalcheim Y, Sassi U, Ott A, De Fazio D, Yoon D, Amado M, Ferrari A C, Linder J and Robinson J W A 2017 Nat. Commun. 8 14024 [29] Ludbrook B, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D, Veenstra C, Zhdanovich S, Wong D, Dosanjh P, StraŞer C, Stohr A, Forti S, Ast C R, Starke U and Damascelli A 2015 Proc. Natl. Acad. Sci. USA 112 11795 [30] Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D and Dean C R 2018 Nature 557 404 [31] Hao Z, Zimmerman A, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2021 Science 371 1133 [32] Cao Y, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 595 526 [33] Zhou H, Xie T, Taniguchi T, Watanabe K and Young A F 2021 Nature 598 434 [34] Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K and Young A F 2022 Science 375 774 [35] Li Z, Kuang X, Jimeno-Pozo A, Sainz-Cruz H, Zhan Z, Yuan S and Guinea F 2023 Phys. Rev. B 108 045404 [36] Shavit G and Oreg Y 2023 Phys. Rev. B 108 024510 [37] Szabó A L and Roy B 2022 Phys. Rev. B 105 L201107 [38] Cea T 2023 Phys. Rev. B 107 L041111 [39] Davis S M, Chou Y Z, Wu F and Das Sarma S 2023 Phys. Rev. B 107 045426 [40] Chou Y Z, Wu F, Sau J D and Das Sarma S 2022 Phys. Rev. B 105 L100503 [41] Jimeno-Pozo A, Sainz-Cruz H, Cea T, Pantaleón P A and Guinea F 2023 Phys. Rev. B 107 L161106 [42] Dong Z, Chubukov A V and Levitov L 2023 Phys. Rev. B 107 174512 [43] Wang Qian, Chen H Y, Hu C R and Ting C S 2006 Phys. Rev. Lett. 96 117006 [44] Jung J and MacDonald A H 2014 Phys. Rev. B 89 035405 [45] Weitz R T, Allen M T, Feldman B E, Martin J and Yacoby A 2010 Science 330 812 [46] Mayorov A S, Elias D C, Mucha-Kruczynski M, Gorbachev R V, Tudorovskiy T, Zhukov A, Morozov S V, Katsnelson M I, Fal'ko V I, Geim A K and Novoselov K S 2011 Science 333 860 [47] Bao W, Velasco J, Zhang F, Jing L, Standley B, Smirnov D, Bockrath M, MacDonald A H and Lau C N 2012 Proc. Natl. Acad. Sci. USA 109 10802 [48] Freitag F, Trbovic J, Weiss M and Schonenberger C 2012 Phys. Rev. Lett. 108 076602 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|