Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047403    DOI: 10.1088/1674-1056/ad102f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene

Yan Huang(黄妍) and Tao Zhou(周涛)
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
Abstract  Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field. In this study, we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system. By developing a theoretical model, we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing, p+ip-wave anti-parallel spin pairing and d+id-wave pairing symmetry. Our results confirm that the magnetic field is indeed essential for generating the superconductivity. We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system. The numerical calculations of the energy band structure, zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.
Keywords:  superconductivity      magnetic field induction      pairing symmetry      Bernal bilayer graphene  
Received:  13 September 2023      Revised:  20 November 2023      Accepted manuscript online:  28 November 2023
PACS:  74.70.Wz (Carbon-based superconductors)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074130) and the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515012340).
Corresponding Authors:  Tao Zhou     E-mail:  tzhou@scnu.edu.cn

Cite this article: 

Yan Huang(黄妍) and Tao Zhou(周涛) Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene 2024 Chin. Phys. B 33 047403

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Apell S P, Hanson G and Hagglund C 2012 arXiv:1201.3071
[4] Ghazaryan A, Holder T, Berg E and Serbyn M 2023 Phys. Rev. B 107 104502
[5] Awoga O A, Lothman T and Black-Schaffer A M 2023 Phys. Rev. B 108 144504
[6] Lu D C, Wang T, Chatterjee S and You Y 2022 Phys. Rev. B 106 155115
[7] Shin J, Chittari B L, Jang Y, Min H and Jung J 2022 Phys. Rev. B 105 245124
[8] Zhang Y, Polski R, Thomson A, Lantagne-Hurtubise E, Lewandowski C, Zhou H, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2023 Nature 613 268
[9] Holleis L, Patterson C L, Zhang Y, Yoo H M, Zhou H, Taniguchi T, Watanabe K, Nadj-Perge S and Young A F 2023 arXiv.2303.00742
[10] Assouline A, Wang T, Zhou H, Cohen L A, Yang F, Zhang R, Taniguchi T, Watanabe K, Mong R S K, Zaletel M P and Young A F 2024 Phys. Rev. Lett. 132 046603
[11] Lin J X, Wang Y, Zhang N J, Watanabe K, Taniguchi T, Fu L and Li J I A 2023 arXiv.2302.04261
[12] Niu R, Li Z, Han X, Qu Z, Ding D, Wang Z, Liu Q, Liu T, Han C, Watanabe K, Taniguchi T, Wu M, Ren Q, Wang X, Hong J, Mao J, Han Z, Liu K, Gan Z and Lu J 2022 Nat. Commun. 613 6241
[13] Chou Y Z and Wu F and Das Sarma S 2022 Phys. Rev. B 106 L180502
[14] Xie M and Das Sarma S 2023 Phys. Rev. B 107 L201119
[15] Curtis J B, Poniatowski N R, Xie Y, Yacoby A, Demler E and Narang P 2023 Phys. Rev. Lett. 130 196001
[16] Xie Y M, Lantagne-Hurtubise E, Young A F, Nadj-Perge S and Alicea J 2023 Phys. Rev. Lett. 131 146601
[17] Dong Z, Davydova M, Ogunnaike O and Levitov L 2023 Phys. Rev. B 107 075108
[18] Wagner G, Kwan Y H, Bultinck N, Simon S H and Parameswaran S A 2023 arXiv.2302.00682
[19] Ren Y N, Cheng Q, Sun Q F and He L 2022 Phys. Rev. Lett. 128 206805
[20] Le N D and Jolicoeur T 2023 Phys. Rev. B 107 125129
[21] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[22] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubono, S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[23] Tonnoir C, Kimouche A, Coraux J, Magaud L, Delsol B, Gilles B and Chapelier C 2013 Phys. Rev. Lett. 111 246805
[24] Chichinadze D V, Classen L and Chubukov A V 2020 Phys. Rev. B 101 224513
[25] Linder J, Black-Schaffer A M, Yokoyama T, Doniach S and Sudbo A 2009 Phys. Rev. B 80 094522
[26] Ichinokura S, Sugawara K, Takayama A, Takahashi T and Hasegawa S 2016 ACS Nano 10 2761
[27] Chapman J, Su Y, Howard C, Kundys D, Grigorenko A, Guinea F, Geim A, Grigorieva I and Nair R 2016 Sci. Rep. 6 1
[28] Di Bernardo A, Millo O, Barbone M, Alpern H, Kalcheim Y, Sassi U, Ott A, De Fazio D, Yoon D, Amado M, Ferrari A C, Linder J and Robinson J W A 2017 Nat. Commun. 8 14024
[29] Ludbrook B, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D, Veenstra C, Zhdanovich S, Wong D, Dosanjh P, StraŞer C, Stohr A, Forti S, Ast C R, Starke U and Damascelli A 2015 Proc. Natl. Acad. Sci. USA 112 11795
[30] Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D and Dean C R 2018 Nature 557 404
[31] Hao Z, Zimmerman A, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2021 Science 371 1133
[32] Cao Y, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 595 526
[33] Zhou H, Xie T, Taniguchi T, Watanabe K and Young A F 2021 Nature 598 434
[34] Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K and Young A F 2022 Science 375 774
[35] Li Z, Kuang X, Jimeno-Pozo A, Sainz-Cruz H, Zhan Z, Yuan S and Guinea F 2023 Phys. Rev. B 108 045404
[36] Shavit G and Oreg Y 2023 Phys. Rev. B 108 024510
[37] Szabó A L and Roy B 2022 Phys. Rev. B 105 L201107
[38] Cea T 2023 Phys. Rev. B 107 L041111
[39] Davis S M, Chou Y Z, Wu F and Das Sarma S 2023 Phys. Rev. B 107 045426
[40] Chou Y Z, Wu F, Sau J D and Das Sarma S 2022 Phys. Rev. B 105 L100503
[41] Jimeno-Pozo A, Sainz-Cruz H, Cea T, Pantaleón P A and Guinea F 2023 Phys. Rev. B 107 L161106
[42] Dong Z, Chubukov A V and Levitov L 2023 Phys. Rev. B 107 174512
[43] Wang Qian, Chen H Y, Hu C R and Ting C S 2006 Phys. Rev. Lett. 96 117006
[44] Jung J and MacDonald A H 2014 Phys. Rev. B 89 035405
[45] Weitz R T, Allen M T, Feldman B E, Martin J and Yacoby A 2010 Science 330 812
[46] Mayorov A S, Elias D C, Mucha-Kruczynski M, Gorbachev R V, Tudorovskiy T, Zhukov A, Morozov S V, Katsnelson M I, Fal'ko V I, Geim A K and Novoselov K S 2011 Science 333 860
[47] Bao W, Velasco J, Zhang F, Jing L, Standley B, Smirnov D, Bockrath M, MacDonald A H and Lau C N 2012 Proc. Natl. Acad. Sci. USA 109 10802
[48] Freitag F, Trbovic J, Weiss M and Schonenberger C 2012 Phys. Rev. Lett. 108 076602
[1] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[2] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[3] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[4] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[5] Effects of carrier density and interactions on pairing symmetry in a t2g model
Yun-Xiao Li(李云霄), Wen-Han Xi(西文翰), Zhao-Yang Dong(董召阳), Zi-Jian Yao(姚子健), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2024, 33(1): 017404.
[6] Multi-band analysis on physical properties of superconducting FeSe films
Jian-Tao Che(车剑韬) and Chen-Xiao Ye(叶晨骁). Chin. Phys. B, 2023, 32(9): 097401.
[7] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[8] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[9] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[10] In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV3Sb5
Xiaoran Yang(杨晓冉), Qi Tang(唐绮), Qiuyun Zhou(周秋韵), Huaiping Wang(王怀平), Yi Li(李意), Xue Fu(付雪), Jiawen Zhang(张加文), Yu Song(宋宇), Huiqiu Yuan(袁辉球), Pengcheng Dai(戴鹏程), and Xingye Lu(鲁兴业). Chin. Phys. B, 2023, 32(12): 127101.
[11] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[12] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[13] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[14] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!