Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047102    DOI: 10.1088/1674-1056/ad1d4e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Research of caged dynamics of clusters center atoms in Pd82Si18 amorphous alloy

Yong-He Deng(邓永和)1,†, Bei Chen(陈贝)2, Qing-Hua Qi(祁清华)2, Bing-Bing Li(李兵兵)2, Ming Gao(高明)1, Da-Dong Wen(文大东)1, Xiao-Yun Wang(王小云)2,‡, and Ping Peng(彭平)3
1 School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, China;
2 School of Physics and Mechanical & Electrical Engineering, Jishou University, Jishou 416000, China;
3 School of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  To date, there is still a lack of a comprehensive explanation for caged dynamics which is regarded as one of the intricate dynamic behaviors in amorphous alloys. This study focuses on Pd82Si18 as the research object to further elucidate the underlying mechanism of caged dynamics from multiple perspectives, including the cage's lifetime, atomic local environment, and atomic potential energy. The results reveal that Si atoms exhibit a pronounced cage effect due to the hindrance of Pd atoms, resulting in an anomalous peak in the non-Gaussian parameters. An in-depth investigation was conducted on the caged dynamics differences between fast and slow Si atoms. In comparison to fast Si atoms, slow Si atoms were surrounded by more Pd atoms and occupied lower potential energy states, resulting in smaller diffusion displacements for the slow Si atoms. Concurrently, slow Si atoms tend to be in the centers of smaller clusters with coordination numbers of 9 and 10. During the isothermal relaxation process, clusters with coordination numbers 9 and 10 have longer lifetimes, suggesting that the escape of slow Si atoms from their cages is more challenging. The findings mentioned above hold significant implications for understanding the caged dynamics.
Keywords:  caged dynamics      Pd82Si18 amorphous alloy      fast and slow atoms      clusters      lifetime  
Received:  14 December 2023      Revised:  08 January 2024      Accepted manuscript online:  11 January 2024
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  64.70.pe (Metallic glasses)  
  61.25.Mv (Liquid metals and alloys)  
  64.70.D- (Solid-liquid transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51701071), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2022JJ50115 and 2021JJ30179), and the Research Foundation of the Education Bureau of Hunan Province, China (Grant No. 22A0522).
Corresponding Authors:  Yong-He Deng, Xiao-Yun Wang     E-mail:  dengyonghe1@163.com;wxyyun@163.com

Cite this article: 

Yong-He Deng(邓永和), Bei Chen(陈贝), Qing-Hua Qi(祁清华), Bing-Bing Li(李兵兵), Ming Gao(高明), Da-Dong Wen(文大东), Xiao-Yun Wang(王小云), and Ping Peng(彭平) Research of caged dynamics of clusters center atoms in Pd82Si18 amorphous alloy 2024 Chin. Phys. B 33 047102

[1] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[2] Guo T Q, Hu P F, Li L D, Wang Z C and Guo L 2023 Chem. 9 1080
[3] Chu F, Wu K Y, Meng Y Y, Edalati K and Lin H J 2021 Int. J. Hydrog. Energy 46 25029
[4] Yang Y C, Xia Z H and Mukherjee S 2021 Nano Lett. 21 9108
[5] Fan C, Kecskes L J, Qiao D C, Choo H and Liaw P K 2006 J. Non-Cryst. Solids 352 174
[6] Zhang S, Chong K, Zhang Z B, Gao Y, Wu D T, Zhao G L and Zou Y 2022 J. Non-Cryst. Solids 593 121775
[7] Wang F, Yuan T C, Li R D, Lin S Q, Xie Z H, Li L B, Cristino V, Xu R and Liu B 2023 J. Alloys Compd. 942 169065
[8] Xu Z R, Qiao J C, Wang J, Pineda E and Crespo D 2022 J. Mater. Sci. Technol. 99 39
[9] Jaiswal A, Egami T and Zhang Y 2015 Phys. Rev. B 91 134204
[10] Puosi F, Jakse N and Pasturel A 2018 J. Phys.:Condens. Matter 30 145701
[11] Jaiswal A, Egami T, Kelton K F, Schweizer K S and Zhang Y 2016 Phys. Rev. Lett. 117 205701
[12] Lyulin A V, Vorselaars B, Mazo M A, Balabaev N K and Michels M A J 2005 Europhys. Lett. 71 618
[13] Ding J, Li L, Wang N, Tian L, Asta M, Ritchie R O and Egami T 2021 Mater. Today Phys. 17 100359
[14] Annamareddy A, Voyles P M, Perepezko J and Morgan D 2021 Acta Mater. 209 116794
[15] Capaccioli S, Ngai K L, Ancherbak S and Paciaroni A 2012 J. Phys. Chem. B 116 1745
[16] Habasaki J and Ngai K L 2006 J. Non-Cryst. Solids 352 5170
[17] Chen Y X, Pan S P, Lu X Q, Kang H, Zhang Y H, Zhang M, Feng S D, Ngai K L and Wang L M 2022 J. Non-Cryst. Solids 590 121699
[18] Wang W H 2019 Prog. Mater. Sci. 106 100561
[19] Wang Z, Ngai K L, Wang W H and Capaccioli S 2016 J. Appl. Phys. 119 024902
[20] Capaccioli S, Ngai K L, Thayyil M S and Prevosto D 2015 J. Phys. Chem. B 119 8800
[21] Wang B, Zhou Z Y, Guan P F, Yu H B, Wang W H and Ngai K L 2020 Phys. Rev. B 102 094205
[22] Priezjev N V 2016 Phys. Rev. E 93 013001
[23] Ohkubo T and Hirotsu Y 2003 Phys. Rev. B 67 094201
[24] Chen N, Li Y and Yao K F 2010 J. Alloys Compd. 504 S211
[25] Wang X T, Zeng M, Nollmann N, Wilde G, Wang J and Tang C Y 2017 AIP Adv. 7 065206
[26] Wu B Q, Kong L T and Li J F 2021 Acta Mater. 207 116705
[27] Verlet L 1967 Phys. Rev. 159 98
[28] https://www.google.com/site/eampotentials/Table/PdSi
[29] Wen T Q, Wang C Z, Kramer M J, Sun Y, Ye B L, Wang H D, Liu X Y, Zhang C, Zhang F, Ho K M and Wang N 2019 Phys. Rev. B 100 174101
[30] Chen Y X, Feng S D, Lu X Q, Pan S P, Xia C Q and Wang L M 2023 J. Chem. Phys. 158 134511
[31] Ojovan M I and Louzguine-Luzgin D V 2020 J. Phys. Chem. B 124 3186
[32] Sabaryati J, Utami L S, Hasanah A W and Viridi S 2021 J. Phys. Conf. Ser. 1816 012110
[33] Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P and Yu A B 2009 J. Non-Cryst. Solids 355 541
[34] Mo Y F, Liu R S, Tian Z A, Liang Y C, Zhang H T, Hou Z Y, Liu H R, Zhang A L, Zhou L L, Peng P and Xie Z 2015 Physica B 465 81
[35] Suzuki K, Hayashi N, Tomizuka Y, Fukunaga T, Kai K and Watanabe N 1984 J. Non-Cryst. Solids 61 637
[1] Optimal preparation of Bose and Fermi atomic gas mixtures of 87Rb and 40K in a crossed optical dipole trap
Peibo Ding(丁培波), Biao Shan(单标), Yuhang Zhao(赵宇航), Yajing Yang(杨雅婧), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉). Chin. Phys. B, 2024, 33(6): 063402.
[2] Stable photocurrent—voltage characteristics of perovskite single crystal detectors obtained by pulsed bias
Xin Liu(刘新), Zhi-Long Chen(陈之龙), Hu Wang(王虎), Wen-Qing Zhang(张雯清), Hao Dong(董昊), Peng-Xiang Wang(王鹏祥), and Yu-Chuan Shao(邵宇川). Chin. Phys. B, 2024, 33(4): 048101.
[3] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[4] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[5] Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation
Ruijun Zhang(张锐军), Rongdun Hong(洪荣墩), Jingrui Han(韩景瑞), Hungkit Ting(丁雄杰), Xiguang Li(李锡光), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Deyi Fu(傅德颐), Dingqu Lin(林鼎渠), Mingkun Zhang(张明昆), Shaoxiong Wu(吴少雄),Yuning Zhang(张宇宁), Zhengyun Wu(吴正云), and Feng Zhang(张峰). Chin. Phys. B, 2023, 32(6): 067205.
[6] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[7] Molecular fluorescence significantly enhanced by gold nanoparticles@zeolitic imidazolate framework-8
Yuyi Zhang(张钰伊), Yajie Bian(卞亚杰), Wei Zhang(张炜), Yiting Liu(刘易婷), Xiaolei Zhang(张晓磊),Mengdi Chen(陈梦迪), Bingwen Hu(胡炳文), and Qingyuan Jin(金庆原). Chin. Phys. B, 2023, 32(5): 054208.
[8] Fully relativistic many-body perturbation energies, transition properties, and lifetimes of lithium-like iron Fe XXIV
Shuang Li(李双), Min Zhao(赵敏), Guo-Qing Liu(刘国庆), Chang-Bao Hu(胡昌宝), and Guo-Zhu Pan(潘国柱). Chin. Phys. B, 2023, 32(10): 103101.
[9] Lifetime measurement of the 3d9 2D3/2 metastable level in Mo15+ at an electron beam ion trap
Jialin Liu(刘佳林), Yintao Wang(王银涛), Bingsheng Tu(屠秉晟), Liangyu Huang(黄良玉), Ran Si(司然), Jiguang Li(李冀光), Mingwu Zhang(张明武), Yunqing Fu(傅云清), Yaming Zou(邹亚明), and Ke Yao(姚科). Chin. Phys. B, 2023, 32(10): 103201.
[10] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[11] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[12] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[13] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[14] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[15] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
No Suggested Reading articles found!