Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050708    DOI: 10.1088/1674-1056/abd75f
GENERAL Prev   Next  

Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR

Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海)
Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation (PRBC-LFM) signals require prior knowledge, are computationally complex, and exhibit poor performance at low signal-to-noise ratios (SNRs). To overcome these problems, a blind parameter estimation method based on a Duffing oscillator array is proposed. A new relationship formula among the state of the Duffing oscillator, the pseudo-random sequence of the PRBC-LFM signal, and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived, providing the theoretical basis for blind parameter estimation. Methods based on amplitude method, short-time Fourier transform method, and power spectrum entropy method are used to binarize the output of the Duffing oscillator array, and their performance is compared. The pseudo-random sequence is estimated using Duffing oscillator array synchronization, and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency. Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of -35 dB.
Keywords:  Duffing oscillator      pseudo-random binary code-linear frequency modulation (PRBC-LFM) signal      blind parameter estimation      low signal-to-noise ratio (SNR)  
Received:  23 October 2020      Revised:  21 December 2020      Accepted manuscript online:  30 December 2020
PACS:  07.50.Qx (Signal processing electronics)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61973037 and 61673066).
Corresponding Authors:  Xiaopeng Yan     E-mail:  yanxiaopeng@bit.edu.cn

Cite this article: 

Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海) Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR 2021 Chin. Phys. B 30 050708

[1] Chaudhary N I, Latif R, Raja M A and Machado J A 2020 Appl. Math. Model. 83 703
[2] Shen C and Ye T 2020 Digit. Signal Prog. 100 102698
[3] Wang P, Du D P, Qiu Z Y and Tang B 2014 IEEE CSE-2014 pp. 1029– 1033
[4] Zhao H C 2011 Acta Armamentarii 5 543
[5] Gardner W A and Spooner C M 1993 IEEE Trans. Commun. 41 231913
[6] Gardner W A and Chen C K 1992 IEEE Trans. Signal Process 40 134479
[7] Xiong G, Zhao H C and Wang L J 2005 J. Electron. Inf. Technol. 7 1087
[8] Zhao H C, Xiong G and Yang X N 2006 Acta Armamentarii 2 258
[9] Xiong G, Yang X N and Zhao H C 2008 J. Electron. Inf. Technol. 30 2115
[10] Lin J, Xiong G and Wang Z X 2006 J. Electron. Inf. Technol. 06 1045
[11] Zeng X D, Tang B and Xiong Y 2012 Chin. J. Aeronaut. 25 416
[12] Tang J, Zhao Y J, Zhu J D and Hu Q 2012 Signal Process. 09 1271
[13] He D, Zhang T Q, Gao L and Gao H X 2012 CISP2012 pp. 1430–1434
[14] Birx D L and Pipenberg S J 1992 IJCNN-1992 pp. 881–888
[15] Shi H S and Li W L 2017 Procedia Comput. Sci. 107 460
[16] Li C J, Xu X M, Ding Y P, Yin L Z and Dou B B 2018 Int. J. Mod. Phys. B 32 1850103
[17] Akilli M and Yilmaz N 2018 IEEE Trans. Neural Syst. Rehabil. Eng. 26 1918
[18] Vahedi H, Gharehpetian G B and Karrari M 2012 IEEE Trans. Power Delivery 27 1973
[19] Rashtchi V and Nourazar M 2015 Circuits, Syst. Signal Process. 34 3101
[20] Patel V N, Tandon N and Pandey R K 2012 Meas. 45 960
[21] Wang G Y, Chen D J, Lin J Y and Chen X 1999 IEEE Trans. Ind. Electron. 46 440
[22] Costa A H, Enriquezcaldera R A, Tellobello M and Bermudezgomez C R 2016 Digit. Signal Prog. 55 32
[23] Zhang S and Rui G S 2012 Int. J. Bifurcation Chaos 22 1250144
[24] Fu Y Q, Wu D M, Zhang L and Li X Y 2011 Sci. China-Inf. Sci. 54 1274
[25] Akilli M and Yilmaz N 2018 IEEE Trans. Neural Syst. Rehabil. Eng. 26 1918
[26] Rashtchi V and Nourazar M 2015 Circuits Syst. Signal Process. 34 3101
[27] Rodgers J L and Nicewander W A 1988 Am. Stat. 42 59
[1] Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator
Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红). Chin. Phys. B, 2018, 27(3): 030702.
[2] A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection
Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰). Chin. Phys. B, 2015, 24(6): 060504.
[3] Regular nonlinear response of the driven Duffing oscillator to chaotic time series
Yuan Ye(袁野), Li Yue(李月), Danilo P. Mandic, and Yang Bao-Jun(杨宝俊). Chin. Phys. B, 2009, 18(3): 958-968.
[4] Extraction of periodic signals in chaotic secure communication using Duffing oscillators
Wang Yun-Cai(王云才), Zhao Qing-Chun(赵清春), and Wang An-Bang(王安帮). Chin. Phys. B, 2008, 17(7): 2373-2376.
[5] Analysis of a kind of Duffing oscillator system used to detect weak signals
Li Yue(李月), Yang Bao-Jun(杨宝俊), Yuan Ye(袁野), and Liu Xiao-Hua(刘晓华). Chin. Phys. B, 2007, 16(4): 1072-1076.
[6] Chaotic synchronization via linear controller
Chen Feng-Xiang(陈凤祥) and Zhang Wei-Dong(张卫东). Chin. Phys. B, 2007, 16(4): 937-941.
No Suggested Reading articles found!