Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030302    DOI: 10.1088/1674-1056/ab6963
GENERAL Prev   Next  

Geometric phase of an open double-quantum-dot system detected by a quantum point contact

Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静)
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  We study theoretically the geometric phase of a double-quantum-dot (DQD) system measured by a quantum point contact (QPC) in the pure dephasing and dissipative environments, respectively. The results show that in these two environments, the coupling strength between the quantum dots has an enhanced impact on the geometric phase during a quasiperiod. This is due to the fact that the expansion of the width of the tunneling channel connecting the two quantum dots accelerates the oscillations of the electron between the quantum dots and makes the length of the evolution path longer. In addition, there is a notable near-zero region in the geometric phase because the stronger coupling between the system and the QPC freezes the electron in one quantum dot and the solid angle enclosed by the evolution path is approximately zero, which is associated with the quantum Zeno effect. For the pure dephasing environment, the geometric phase is suppressed as the dephasing rate increases which is caused only by the phase damping of the system. In the dissipative environment, the geometric phase is reduced with the increase of the relaxation rate which results from both the energy dissipation and phase damping of the system. Our results are helpful for using the geometric phase to construct the fault-tolerant quantum devices based on quantum dot systems in quantum information.
Keywords:  geometric phase      decoherence      quantum transport  
Received:  01 November 2019      Revised:  26 December 2019      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM030).
Corresponding Authors:  Yan-Hui Zhang     E-mail:  yhzhang@sdnu.edu.cn

Cite this article: 

Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静) Geometric phase of an open double-quantum-dot system detected by a quantum point contact 2020 Chin. Phys. B 29 030302

[1] Berry M V 1984 Proc. R. Soc. A 392 45
[2] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[3] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[4] Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[5] Tong D M, Sjöqvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405
[6] Uhlmann A 1986 Rep. Math. Phys. 24 229
[7] Yi X X and Chang J L 2004 Phys. Rev. A 70 012108
[8] Tong D M, Sjöqvist E, Filipp S, Kwek L C and Oh C H 2005 Phys. Rev. A 71 032106
[9] Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94 140402
[10] Carollo A, Fuentes-Guridi I, Franca S M and Vedral V 2003 Phys. Rev. Lett. 90 160402
[11] Cai X J and Zheng Y J 2016 Phys. Rev. A 94 042110
[12] Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104
[13] Cai X J and Zheng Y J 2018 J. Chem. Phys. 149 094107
[14] Cai X J 2019 Entropy 21 1040
[15] Cai X J 2020 Sci. Rep. 10 88
[16] Wang Y M, Du G and Liang J Q 2012 Chin. Phys. B 21 044207
[17] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z and Wang C K 2017 Chin. Phys. B 26 098508
[18] Chiao R Y and Wu Y S 1986 Phys. Rev. Lett. 57 933
[19] Tomita A and Chiao R Y 1986 Phys. Rev. Lett. 57 937
[20] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[21] Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Oi D K L and Vedral V 2000 J. Mod. Opt. 47 2501
[22] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[23] Fuentes-Guridi I, Girelli F and Livine E 2005 Phys. Rev. Lett. 94 020503
[24] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
[25] Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y and Duan L M 2019 Phys. Rev. Lett. 122 010503
[26] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[27] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355
[28] Xie H, Li H C, Yang R C, Lin X and Huang Z P 2007 Chin. Phys. 16 3382
[29] Jin X R, Zhang Y Q, Zhang S and Jin D Z 2007 Chin. Phys. 16 1220
[30] Zhang Y Q, Jin X R and Zhang S 2008 Chin. Phys. B 17 424
[31] Yang R C, Li H C, Lin X and Huang Z P 2008 Chin. Phys. B 17 180
[32] Zhang L B, Song C, Wang H and Zheng S B 2018 Chin. Phys. B 27 070303
[33] Zhu A D, Zhang S, Yeon K H, Yu S C and Um C I 2007 Chin. Phys. B 16 1559
[34] Zhou H, Li Z K, Wang H Y, Chen H W, Peng X H and Du J F 2016 Chin. Phys. Lett. 33 060301
[35] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[36] Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[37] Zanardi P and Rossi F 1999 Phys. Rev. B 59 8170
[38] Zanardi P and Rossi F 1998 Phys. Rev. Lett. 81 4752
[39] Brum J A and Hawrylak P 1997 Superlattice. Microst. 22 431
[40] Gurvitz S A, Fedichkin L, Mozyrsky D and Berman G P 2003 Phys. Rev. Lett. 91 066801
[41] Kang L S, Zhang Y H, Xu X L and Tang X 2017 Phys. Rev. B 96 235417
[42] Levinson Y 1997 Europhys. Lett. 39 299
[43] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[44] Yi X X, Wang L C and Wang W 2005 Phys. Rev. A 71 044101
[45] Lombardo F C and Villar P I 2010 Phys. Rev. A 81 022115
[46] Rezakhani A T and Zanardi P 2006 Phys. Rev. A 73 052117
[47] Luo D W, You J Q, Lin H Q, Wu L A and Yu T 2018 Phys. Rev. A 98 052117
[48] Sjöqvist E, Yi X X and Åberg J 2005 Phys. Rev. A 72 054101
[49] Villar P I and Lombardo F C 2011 Phys. Rev. A 83 052121
[50] Cai X J, Meng R, Zhang Y H and Wang L 2019 Europhys. Lett. 125 30007
[51] Dajka J, Mierzejewski M and Łuczka J 2007 J. Phys. A 41 012001
[52] Fujikawa K and Hu M G 2009 Phys. Rev. A 79 052107
[53] Berger S, Pechal M, Pugnetti S, Abdumalikov A A, Steffen L, Fedorov A, Wallraff A and Filipp S 2012 Phys. Rev. B 85 220502
[54] Guo W, Ma J, Yin X, Zhong W and Wang X 2014 Phys. Rev. A 90 062133
[55] Li X and Shi Y 2013 Europhys. Lett. 103 20005
[56] De Chiara G and Palma G M 2003 Phys. Rev. Lett. 91 090404
[57] Abdel-Khalek S, Berrada K, El-Sayed M A and Abel-Aty M 2013 Chin. Phys. B 22 100301
[58] Li Z J, Cheng L and Wen J J 2010 Chin. Phys. B 19 010305
[59] Tian L J, Zhu C Q, Zhang H B and Qin L G 2011 Chin. Phys. B 20 040302
[60] Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
[61] Zhang A P and Li F L 2013 Chin. Phys. B 22 030308
[62] Jia X Y, Li W D and Liang J Q 2007 Chin. Phys. 16 2855
[63] Zhong W X, Cheng G L and Chen A X 2010 Chin. Phys. B 19 110310
[64] Yuan Z G and Zhang P 2015 Chin. Phys. Lett. 32 060301
[65] Sun S N and Zheng Y J 2019 Phys. Rev. Lett. 123 180403
[66] Chen J J, An J H, Tong Q J, Luo H G and Oh C H 2010 Phys. Rev. A 81 022120
[67] Yi X X, Tong D M, Wang L C, Kwek L C and Oh C H 2006 Phys. Rev. A 73 052103
[68] Yuan X Z and Zhu K D 2006 Phys. Rev. B 74 073309
[69] Liu B, Zhang F Y, Chen Z H and Song H S 2013 Int. J. Theor. Phys. 52 1877
[70] Liu B, Zhang F Y, Song J and Song H S 2015 Sci. Rep. 5 11726
[71] Gurvitz S A and Mozyrsky D 2008 Phys. Rev. B 77 075325
[72] Gilad T and Gurvitz S A 2006 Phys. Rev. Lett. 97 116806
[73] Gurvitz S A and Berman G P 2005 Phys. Rev. B 72 073303
[74] Yin S and Tong D M 2009 Phys. Rev. A 79 044303
[75] Yin S and Tong D M 2010 J. Phys. A 43 305303
[76] Gurvitz S A and Prager Y S 1996 Phys. Rev. B 53 15932
[77] Xu C and Vavilov M G 2013 Phys. Rev. B 88 195307
[78] Luo J Y, Jiao H J, Shen Y, Cen G, He X L and Wang C R 2011 J. Phys. Condens. Mat. 23 145301
[79] Nazir A, Spiller T P and Munro W J 2002 Phys. Rev. A 65 042303
[80] Wang H and Zhu K D 2008 Europhys. Lett. 82 60006
[81] Wu S L, Huang X L, Wang L C and Yi X X 2010 Phys. Rev. A 82 052111
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[3] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[4] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[5] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[6] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[7] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[8] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[9] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[10] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[11] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[12] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[13] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[14] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[15] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
No Suggested Reading articles found!