|
|
Geometric phase of an open double-quantum-dot system detected by a quantum point contact |
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静) |
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract We study theoretically the geometric phase of a double-quantum-dot (DQD) system measured by a quantum point contact (QPC) in the pure dephasing and dissipative environments, respectively. The results show that in these two environments, the coupling strength between the quantum dots has an enhanced impact on the geometric phase during a quasiperiod. This is due to the fact that the expansion of the width of the tunneling channel connecting the two quantum dots accelerates the oscillations of the electron between the quantum dots and makes the length of the evolution path longer. In addition, there is a notable near-zero region in the geometric phase because the stronger coupling between the system and the QPC freezes the electron in one quantum dot and the solid angle enclosed by the evolution path is approximately zero, which is associated with the quantum Zeno effect. For the pure dephasing environment, the geometric phase is suppressed as the dephasing rate increases which is caused only by the phase damping of the system. In the dissipative environment, the geometric phase is reduced with the increase of the relaxation rate which results from both the energy dissipation and phase damping of the system. Our results are helpful for using the geometric phase to construct the fault-tolerant quantum devices based on quantum dot systems in quantum information.
|
Received: 01 November 2019
Revised: 26 December 2019
Accepted manuscript online:
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
05.60.Gg
|
(Quantum transport)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM030). |
Corresponding Authors:
Yan-Hui Zhang
E-mail: yhzhang@sdnu.edu.cn
|
Cite this article:
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静) Geometric phase of an open double-quantum-dot system detected by a quantum point contact 2020 Chin. Phys. B 29 030302
|
[1] |
Berry M V 1984 Proc. R. Soc. A 392 45
|
[2] |
Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
|
[3] |
Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
|
[4] |
Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
|
[5] |
Tong D M, Sjöqvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405
|
[6] |
Uhlmann A 1986 Rep. Math. Phys. 24 229
|
[7] |
Yi X X and Chang J L 2004 Phys. Rev. A 70 012108
|
[8] |
Tong D M, Sjöqvist E, Filipp S, Kwek L C and Oh C H 2005 Phys. Rev. A 71 032106
|
[9] |
Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94 140402
|
[10] |
Carollo A, Fuentes-Guridi I, Franca S M and Vedral V 2003 Phys. Rev. Lett. 90 160402
|
[11] |
Cai X J and Zheng Y J 2016 Phys. Rev. A 94 042110
|
[12] |
Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104
|
[13] |
Cai X J and Zheng Y J 2018 J. Chem. Phys. 149 094107
|
[14] |
Cai X J 2019 Entropy 21 1040
|
[15] |
Cai X J 2020 Sci. Rep. 10 88
|
[16] |
Wang Y M, Du G and Liang J Q 2012 Chin. Phys. B 21 044207
|
[17] |
Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z and Wang C K 2017 Chin. Phys. B 26 098508
|
[18] |
Chiao R Y and Wu Y S 1986 Phys. Rev. Lett. 57 933
|
[19] |
Tomita A and Chiao R Y 1986 Phys. Rev. Lett. 57 937
|
[20] |
Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
|
[21] |
Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Oi D K L and Vedral V 2000 J. Mod. Opt. 47 2501
|
[22] |
Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
|
[23] |
Fuentes-Guridi I, Girelli F and Livine E 2005 Phys. Rev. Lett. 94 020503
|
[24] |
Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
|
[25] |
Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y and Duan L M 2019 Phys. Rev. Lett. 122 010503
|
[26] |
Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
|
[27] |
Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355
|
[28] |
Xie H, Li H C, Yang R C, Lin X and Huang Z P 2007 Chin. Phys. 16 3382
|
[29] |
Jin X R, Zhang Y Q, Zhang S and Jin D Z 2007 Chin. Phys. 16 1220
|
[30] |
Zhang Y Q, Jin X R and Zhang S 2008 Chin. Phys. B 17 424
|
[31] |
Yang R C, Li H C, Lin X and Huang Z P 2008 Chin. Phys. B 17 180
|
[32] |
Zhang L B, Song C, Wang H and Zheng S B 2018 Chin. Phys. B 27 070303
|
[33] |
Zhu A D, Zhang S, Yeon K H, Yu S C and Um C I 2007 Chin. Phys. B 16 1559
|
[34] |
Zhou H, Li Z K, Wang H Y, Chen H W, Peng X H and Du J F 2016 Chin. Phys. Lett. 33 060301
|
[35] |
Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
[36] |
Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
|
[37] |
Zanardi P and Rossi F 1999 Phys. Rev. B 59 8170
|
[38] |
Zanardi P and Rossi F 1998 Phys. Rev. Lett. 81 4752
|
[39] |
Brum J A and Hawrylak P 1997 Superlattice. Microst. 22 431
|
[40] |
Gurvitz S A, Fedichkin L, Mozyrsky D and Berman G P 2003 Phys. Rev. Lett. 91 066801
|
[41] |
Kang L S, Zhang Y H, Xu X L and Tang X 2017 Phys. Rev. B 96 235417
|
[42] |
Levinson Y 1997 Europhys. Lett. 39 299
|
[43] |
van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
|
[44] |
Yi X X, Wang L C and Wang W 2005 Phys. Rev. A 71 044101
|
[45] |
Lombardo F C and Villar P I 2010 Phys. Rev. A 81 022115
|
[46] |
Rezakhani A T and Zanardi P 2006 Phys. Rev. A 73 052117
|
[47] |
Luo D W, You J Q, Lin H Q, Wu L A and Yu T 2018 Phys. Rev. A 98 052117
|
[48] |
Sjöqvist E, Yi X X and Åberg J 2005 Phys. Rev. A 72 054101
|
[49] |
Villar P I and Lombardo F C 2011 Phys. Rev. A 83 052121
|
[50] |
Cai X J, Meng R, Zhang Y H and Wang L 2019 Europhys. Lett. 125 30007
|
[51] |
Dajka J, Mierzejewski M and Łuczka J 2007 J. Phys. A 41 012001
|
[52] |
Fujikawa K and Hu M G 2009 Phys. Rev. A 79 052107
|
[53] |
Berger S, Pechal M, Pugnetti S, Abdumalikov A A, Steffen L, Fedorov A, Wallraff A and Filipp S 2012 Phys. Rev. B 85 220502
|
[54] |
Guo W, Ma J, Yin X, Zhong W and Wang X 2014 Phys. Rev. A 90 062133
|
[55] |
Li X and Shi Y 2013 Europhys. Lett. 103 20005
|
[56] |
De Chiara G and Palma G M 2003 Phys. Rev. Lett. 91 090404
|
[57] |
Abdel-Khalek S, Berrada K, El-Sayed M A and Abel-Aty M 2013 Chin. Phys. B 22 100301
|
[58] |
Li Z J, Cheng L and Wen J J 2010 Chin. Phys. B 19 010305
|
[59] |
Tian L J, Zhu C Q, Zhang H B and Qin L G 2011 Chin. Phys. B 20 040302
|
[60] |
Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
|
[61] |
Zhang A P and Li F L 2013 Chin. Phys. B 22 030308
|
[62] |
Jia X Y, Li W D and Liang J Q 2007 Chin. Phys. 16 2855
|
[63] |
Zhong W X, Cheng G L and Chen A X 2010 Chin. Phys. B 19 110310
|
[64] |
Yuan Z G and Zhang P 2015 Chin. Phys. Lett. 32 060301
|
[65] |
Sun S N and Zheng Y J 2019 Phys. Rev. Lett. 123 180403
|
[66] |
Chen J J, An J H, Tong Q J, Luo H G and Oh C H 2010 Phys. Rev. A 81 022120
|
[67] |
Yi X X, Tong D M, Wang L C, Kwek L C and Oh C H 2006 Phys. Rev. A 73 052103
|
[68] |
Yuan X Z and Zhu K D 2006 Phys. Rev. B 74 073309
|
[69] |
Liu B, Zhang F Y, Chen Z H and Song H S 2013 Int. J. Theor. Phys. 52 1877
|
[70] |
Liu B, Zhang F Y, Song J and Song H S 2015 Sci. Rep. 5 11726
|
[71] |
Gurvitz S A and Mozyrsky D 2008 Phys. Rev. B 77 075325
|
[72] |
Gilad T and Gurvitz S A 2006 Phys. Rev. Lett. 97 116806
|
[73] |
Gurvitz S A and Berman G P 2005 Phys. Rev. B 72 073303
|
[74] |
Yin S and Tong D M 2009 Phys. Rev. A 79 044303
|
[75] |
Yin S and Tong D M 2010 J. Phys. A 43 305303
|
[76] |
Gurvitz S A and Prager Y S 1996 Phys. Rev. B 53 15932
|
[77] |
Xu C and Vavilov M G 2013 Phys. Rev. B 88 195307
|
[78] |
Luo J Y, Jiao H J, Shen Y, Cen G, He X L and Wang C R 2011 J. Phys. Condens. Mat. 23 145301
|
[79] |
Nazir A, Spiller T P and Munro W J 2002 Phys. Rev. A 65 042303
|
[80] |
Wang H and Zhu K D 2008 Europhys. Lett. 82 60006
|
[81] |
Wu S L, Huang X L, Wang L C and Yi X X 2010 Phys. Rev. A 82 052111
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|