|
|
Boundary states for entanglement robustness under dephasing and bit flip channels |
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅) |
College of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract We investigate the robustness of entanglement for a multiqubit system under dephasing and bit flip channels. We exhibit the difference between the entanglement evolution of the two forms of special states, which are locally unitarily equivalent to each other and therefore possess precisely the same entanglement properties, and demonstrate that the difference increases with the number of qubits n. Moreover, those two forms of states are either the most robust genuine entangled states or the most fragile ones, which confirm that local unitary (LU) operations can greatly enhance the entanglement robustness of n-qubit states.
|
Received: 16 May 2019
Revised: 13 August 2019
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFE0200700) and the National Natural Science Foundation of China (Grant Nos. 61627820 and 61934003). |
Corresponding Authors:
Xue-Mei Su
E-mail: suxm@jlu.edu.cn
|
Cite this article:
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅) Boundary states for entanglement robustness under dephasing and bit flip channels 2019 Chin. Phys. B 28 100302
|
[31] |
Kraus K 1983 States, Effect, and Operation: Fundamental Notions in Quantum Theory (Berlin: Springer-Verlag)
|
[32] |
Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
|
[1] |
Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[33] |
Peres A 1996 Phys. Rev. Lett. 77 1413
|
[2] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[34] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[3] |
Bennett C H and Divincenzo D P 2000 Nature 404 247
|
[35] |
Lee S, Chi D P, Oh S D and Kim J 2003 Phys. Rev. A 68 062304
|
[36] |
Życzkowski K and Kuś M 1994 J. Phys. A: Math. Gen. 27 4235
|
[4] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[5] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[6] |
Hu M L 2012 Ann. Phys. 327 2332
|
[7] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[8] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
[9] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[10] |
Sheng Y B and Zhou L 2017 Sci. Bull. 62 1025
|
[11] |
Aolita L, Melo F de and Davidovich L 2015 Rep. Prog. Phys. 78 042001
|
[12] |
Wang D, Shi W N, Hoehn Ross D, Ming F, Sun W Y, Kais S and Ye L 2018 Ann. Phys. 530 1800080
|
[13] |
Chen M N, Wang D and Ye L 2019 Phys. Lett. A 383 977
|
[14] |
Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
|
[15] |
Yu T and Eberly J H 2009 Science 323 598
|
[16] |
Roszak K, Horodecki P and Horodecki R 2010 Phys. Rev. A 81 042308
|
[17] |
Almeida M P, de Melo F, Meyll H M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579
|
[18] |
Yönaç M, Yu T and Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
|
[19] |
Yönaç M, Yu T and Eberly J H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 S45
|
[20] |
Kim K I, Zhao B K and S Li H M 2014 Commun. Theor. Phys. 62 667
|
[21] |
Li H M and Su X M 2019 Eur. Phys. J. D 73 56
|
[22] |
Gühne O, Bodoky F and Blaauboer M 2008 Phys. Rev. A 78 060301
|
[23] |
Borras A, Majtey A P, Plastino A R, Casas M and Plastino A 2009 Phys. Rev. A 79 022108
|
[24] |
Ali M and Gühne O 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055503
|
[25] |
Zhao B K and S Deng F G 2010 Phys. Rev. A 82 014301
|
[26] |
Zhang F L, Jiang Y and Liang M L 2013 Ann. Phys. 333 136
|
[27] |
Li H M and S Zhao B K 2018 Ann. Phys. 530 1800053
|
[28] |
Man Z X, Xia Y J and An N B 2008 Phys. Rev. A 78 064301
|
[29] |
Aolita L, Chaves R, Cavalcanti D, Acin A and S Davidovich L 2008 Phys. Rev. Lett. 100 080501
|
[30] |
Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and S Davidovich L 2008 Phys. Rev. A 78 022322
|
[31] |
Kraus K 1983 States, Effect, and Operation: Fundamental Notions in Quantum Theory (Berlin: Springer-Verlag)
|
[32] |
Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
|
[33] |
Peres A 1996 Phys. Rev. Lett. 77 1413
|
[34] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[35] |
Lee S, Chi D P, Oh S D and Kim J 2003 Phys. Rev. A 68 062304
|
[36] |
Życzkowski K and Kuś M 1994 J. Phys. A: Math. Gen. 27 4235
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|