Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 100302    DOI: 10.1088/1674-1056/ab3e67
GENERAL Prev   Next  

Boundary states for entanglement robustness under dephasing and bit flip channels

Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅)
College of Physics, Jilin University, Changchun 130012, China
Abstract  

We investigate the robustness of entanglement for a multiqubit system under dephasing and bit flip channels. We exhibit the difference between the entanglement evolution of the two forms of special states, which are locally unitarily equivalent to each other and therefore possess precisely the same entanglement properties, and demonstrate that the difference increases with the number of qubits n. Moreover, those two forms of states are either the most robust genuine entangled states or the most fragile ones, which confirm that local unitary (LU) operations can greatly enhance the entanglement robustness of n-qubit states.

Keywords:  entanglement      decoherence      robustness      local unitary equivalence  
Received:  16 May 2019      Revised:  13 August 2019      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFE0200700) and the National Natural Science Foundation of China (Grant Nos. 61627820 and 61934003).

Corresponding Authors:  Xue-Mei Su     E-mail:  suxm@jlu.edu.cn

Cite this article: 

Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅) Boundary states for entanglement robustness under dephasing and bit flip channels 2019 Chin. Phys. B 28 100302

[31] Kraus K 1983 States, Effect, and Operation: Fundamental Notions in Quantum Theory (Berlin: Springer-Verlag)
[32] Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[1] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[33] Peres A 1996 Phys. Rev. Lett. 77 1413
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[34] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[3] Bennett C H and Divincenzo D P 2000 Nature 404 247
[35] Lee S, Chi D P, Oh S D and Kim J 2003 Phys. Rev. A 68 062304
[36] Życzkowski K and Kuś M 1994 J. Phys. A: Math. Gen. 27 4235
[4] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[5] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Hu M L 2012 Ann. Phys. 327 2332
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[9] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[10] Sheng Y B and Zhou L 2017 Sci. Bull. 62 1025
[11] Aolita L, Melo F de and Davidovich L 2015 Rep. Prog. Phys. 78 042001
[12] Wang D, Shi W N, Hoehn Ross D, Ming F, Sun W Y, Kais S and Ye L 2018 Ann. Phys. 530 1800080
[13] Chen M N, Wang D and Ye L 2019 Phys. Lett. A 383 977
[14] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[15] Yu T and Eberly J H 2009 Science 323 598
[16] Roszak K, Horodecki P and Horodecki R 2010 Phys. Rev. A 81 042308
[17] Almeida M P, de Melo F, Meyll H M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579
[18] Yönaç M, Yu T and Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
[19] Yönaç M, Yu T and Eberly J H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 S45
[20] Kim K I, Zhao B K and S Li H M 2014 Commun. Theor. Phys. 62 667
[21] Li H M and Su X M 2019 Eur. Phys. J. D 73 56
[22] Gühne O, Bodoky F and Blaauboer M 2008 Phys. Rev. A 78 060301
[23] Borras A, Majtey A P, Plastino A R, Casas M and Plastino A 2009 Phys. Rev. A 79 022108
[24] Ali M and Gühne O 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055503
[25] Zhao B K and S Deng F G 2010 Phys. Rev. A 82 014301
[26] Zhang F L, Jiang Y and Liang M L 2013 Ann. Phys. 333 136
[27] Li H M and S Zhao B K 2018 Ann. Phys. 530 1800053
[28] Man Z X, Xia Y J and An N B 2008 Phys. Rev. A 78 064301
[29] Aolita L, Chaves R, Cavalcanti D, Acin A and S Davidovich L 2008 Phys. Rev. Lett. 100 080501
[30] Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and S Davidovich L 2008 Phys. Rev. A 78 022322
[31] Kraus K 1983 States, Effect, and Operation: Fundamental Notions in Quantum Theory (Berlin: Springer-Verlag)
[32] Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[33] Peres A 1996 Phys. Rev. Lett. 77 1413
[34] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[35] Lee S, Chi D P, Oh S D and Kim J 2003 Phys. Rev. A 68 062304
[36] Życzkowski K and Kuś M 1994 J. Phys. A: Math. Gen. 27 4235
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[10] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[11] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[12] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[13] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!