Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047301    DOI: 10.1088/1674-1056/ad11e5
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires

Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣)
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Zinc oxide (ZnO) shows great potential in electronics, but its large intrinsic thermal conductivity limits its thermoelectric applications. In this work, we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO<0001> nanowires based on first-principles and molecular dynamics simulations. Under the synergistic effect of band degeneracy and weak phonon—electron scattering, P-type (ZnO)73 nanowires achieve an ultra-high power factor above 1500 μW· cm-1· K-2 over a wide temperature range. The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence. When the ZnO nanowire diameter exceeds 12.72 Å, the carrier transport properties increase significantly, while the thermal conductivity shows a slight increase with the diameter size, resulting in a ZT value of up to 6.4 at 700 K for P-type (ZnO)73. For the first time, the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires. This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.
Keywords:  ZnO nanowire      size effect      thermoelectric performance      deformation potential theory  
Received:  05 October 2023      Revised:  20 November 2023      Accepted manuscript online:  04 December 2023
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52130604 and 51825604).
Corresponding Authors:  Guihua Tang     E-mail:  ghtang@mail.xjtu.edu.cn

Cite this article: 

Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣) Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires 2024 Chin. Phys. B 33 047301

[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[2] Zhu T J, Liu Y T, Fu C G, Heremans J P, Snyder G J and Zhao X B 2017 Adv. Mater. 29 1605884
[3] Yang T, Pan H, Tian G, Zhang B B, Xiong D, Gao Y Y, Yan C, Chu X, Chen N J, Zhong S, Zhang Lei, Deng W L and Yang W Q 2020 Nano Energy 72 104706
[4] Zhang S C, Liu Z F, Ruan M N, Guo Z G, Lei E, Zhao W, Zhao D, Wu X F and Chen D M 2019 Appl. Catal. B 262 118279
[5] Wu W Z and Wang Z L 2016 Nat. Rev. Mater. 1 16031
[6] Li D L, Gong Y N, Chen Y X, Lin J M, Khan Q, Zhang Y P, Liu Y, Zhang H and Xie H P 2020 Nano-Micro Lett. 12 36
[7] Mao J, Liu Z H and Ren Z F 2016 npj Quantum Mater. 1 16028
[8] Liu W S, Jie Q, Kim H S and Ren Z F 2015 Acta. Mater. 87 357
[9] Nakamura K 2015 Key Eng. Materials. 644 16
[10] Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y and Wang Z L 2013 Nat. Photonics 7 752
[11] Alenezi M R, Henley S J, Emerson N G and Silva R P 2014 Nanoscale 6 235
[12] Wang C, Wang Y X, Zhang G B, Peng C X and Yang G 2014 Phys. Chem. Chem. Phys. 16 3771
[13] Shi L H, He J and Li D F 2019 Phys. Lett. A 383 3118
[14] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B and Zhang G 2020 Phys. Rep. 860 1
[15] Fu B, Parrish K D, Kim H Y, Tang G H and McGaughey A J H 2020 Phys. Rev. B 101 045417
[16] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[17] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Ghajari N, Kompany A, Movlarooy T, Roozban F and Majidiyan M 2013 J. Magn. Magn. Mater. 325 42
[20] Hou Q Y, Wu Y and Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese)
[21] Guo S Q, Hou Q Y, Zhao C W and Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese)
[22] Madsen G K, Carrete J and Verstraete M J 2018 Comput. Phys. Commun. 231 140
[23] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[24] Xi J X, Long M Q, Tang L, Wang D and Shuai Z G 2012 Nanoscale 4 4348
[25] Adeagbo W A, Thomas S, Nayak S K, Ernst A and Hergert W 2014 Phys. Rev. B 89 195135
[26] Chung Y K, Jeon J; Lee J, Choi J Y and Huh J 2022 Appl. Phys. Lett. 120 073101
[27] Lee J, Chung Y K, Sung D, Jeong B J, Oh S, Choi J Y and Huh J 2022 Nanotechnology 33 135703
[28] Deo B and Behera S N 1966 Phys. Rev. 141 738
[29] Lee S H 2007 Bull. Korean Chem. Soc. 28 1371
[30] Kawamura T, Kangawa Y and Kakimoto K 2005 J. Cryst. Growth 284 197
[31] Momeni K, Odegard G M and Yassar R S 2012 Acta Mater. 60 5117
[32] Binks D J and Grimes R W 1993 J. Am. Ceram. Soc. 76 2370
[33] Fan W, Xu H, Rosa A L, Frauenheim T and Zhang R Q 2007 Phys. Rev. B 76 073302
[34] Liu C R and Li J B 2011 Phys. Lett. A 375 2878
[35] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Synder G J 2011 Nature 473 66
[36] Patrick K S, Simon R P and Pawel K 2002 Phys. Rev. B 65 144306
[37] Hong Y, Zhang J C and Zeng X C 2016 J. Phys. Chem. C 120 26067
[38] Cherif O L and Patrice C 2012 J. Appl. Phys. 112 084907
[39] Chantrenne P and Ould L 2012 J. Heat Transfer 134 1
[40] Zhang M, Tang G H, Li Y F, Fu B and Wang X Y 2020 Int. J. Thermophys. 41 57
[41] Han D, Wang X Y, Ding W Y, Chen Y, Zhang J C, Xin G M and Cheng L 2019 Nanotechnology 30 075403
[42] Cheng Y H, Ma J L, Xu Y X, Sun G Q, Ruan X L and Luo X B 2022 Mater. Today Phys. 27 100776
[43] Yuldashev S U, Yalishev V S, Cho H D and Kang T W 2016 J. Nanosci. Nanotechnol. 16 1592
[44] Chen Q, Li X J, Wang Y, Wang J, Chang L J, Zhang Y W, Ma H A and Jia X P 2021 J. Alloy. Compd. 886 161200
[45] Chen Q, Zhang H N, Zhan Y W, Ma H A, Wang X C and Jia X P 2021 Ceram. Int. 48 9014
[1] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[2] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[3] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[4] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[5] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[6] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
[7] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[8] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[9] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[12] Size effect of Si particles on the electrochemical performances of Si/C composite anodes
Bonan Liu(刘柏男), Hao Lu(陆浩), Geng Chu(褚赓), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Shimou Chen(陈仕谋), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088201.
[13] Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure
Miao-Ling Que(阙妙玲), Xian-Di Wang(王贤迪), Yi-Yao Peng(彭轶瑶), Cao-Feng Pan(潘曹峰). Chin. Phys. B, 2017, 26(6): 067301.
[14] Unified semiclassical approach to electronic transport from diffusive to ballistic regimes
Hao Geng(耿浩), Wei-Yin Deng(邓伟胤), Yue-Jiao Ren(任月皎), Li Sheng(盛利), Ding-Yu Xing(邢定钰). Chin. Phys. B, 2016, 25(9): 097201.
[15] Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm
Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2016, 25(8): 086502.
No Suggested Reading articles found!