Special Issue:
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
|
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires |
Yinan Nie(聂祎楠), Guihua Tang(唐桂华)†, Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣) |
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Zinc oxide (ZnO) shows great potential in electronics, but its large intrinsic thermal conductivity limits its thermoelectric applications. In this work, we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO<0001> nanowires based on first-principles and molecular dynamics simulations. Under the synergistic effect of band degeneracy and weak phonon—electron scattering, P-type (ZnO)73 nanowires achieve an ultra-high power factor above 1500 μW· cm-1· K-2 over a wide temperature range. The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence. When the ZnO nanowire diameter exceeds 12.72 Å, the carrier transport properties increase significantly, while the thermal conductivity shows a slight increase with the diameter size, resulting in a ZT value of up to 6.4 at 700 K for P-type (ZnO)73. For the first time, the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires. This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.
|
Received: 05 October 2023
Revised: 20 November 2023
Accepted manuscript online: 04 December 2023
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52130604 and 51825604). |
Corresponding Authors:
Guihua Tang
E-mail: ghtang@mail.xjtu.edu.cn
|
Cite this article:
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣) Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires 2024 Chin. Phys. B 33 047301
|
[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 [2] Zhu T J, Liu Y T, Fu C G, Heremans J P, Snyder G J and Zhao X B 2017 Adv. Mater. 29 1605884 [3] Yang T, Pan H, Tian G, Zhang B B, Xiong D, Gao Y Y, Yan C, Chu X, Chen N J, Zhong S, Zhang Lei, Deng W L and Yang W Q 2020 Nano Energy 72 104706 [4] Zhang S C, Liu Z F, Ruan M N, Guo Z G, Lei E, Zhao W, Zhao D, Wu X F and Chen D M 2019 Appl. Catal. B 262 118279 [5] Wu W Z and Wang Z L 2016 Nat. Rev. Mater. 1 16031 [6] Li D L, Gong Y N, Chen Y X, Lin J M, Khan Q, Zhang Y P, Liu Y, Zhang H and Xie H P 2020 Nano-Micro Lett. 12 36 [7] Mao J, Liu Z H and Ren Z F 2016 npj Quantum Mater. 1 16028 [8] Liu W S, Jie Q, Kim H S and Ren Z F 2015 Acta. Mater. 87 357 [9] Nakamura K 2015 Key Eng. Materials. 644 16 [10] Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y and Wang Z L 2013 Nat. Photonics 7 752 [11] Alenezi M R, Henley S J, Emerson N G and Silva R P 2014 Nanoscale 6 235 [12] Wang C, Wang Y X, Zhang G B, Peng C X and Yang G 2014 Phys. Chem. Chem. Phys. 16 3771 [13] Shi L H, He J and Li D F 2019 Phys. Lett. A 383 3118 [14] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B and Zhang G 2020 Phys. Rep. 860 1 [15] Fu B, Parrish K D, Kim H Y, Tang G H and McGaughey A J H 2020 Phys. Rev. B 101 045417 [16] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [17] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [19] Ghajari N, Kompany A, Movlarooy T, Roozban F and Majidiyan M 2013 J. Magn. Magn. Mater. 325 42 [20] Hou Q Y, Wu Y and Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese) [21] Guo S Q, Hou Q Y, Zhao C W and Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [22] Madsen G K, Carrete J and Verstraete M J 2018 Comput. Phys. Commun. 231 140 [23] Bardeen J and Shockley W 1950 Phys. Rev. 80 72 [24] Xi J X, Long M Q, Tang L, Wang D and Shuai Z G 2012 Nanoscale 4 4348 [25] Adeagbo W A, Thomas S, Nayak S K, Ernst A and Hergert W 2014 Phys. Rev. B 89 195135 [26] Chung Y K, Jeon J; Lee J, Choi J Y and Huh J 2022 Appl. Phys. Lett. 120 073101 [27] Lee J, Chung Y K, Sung D, Jeong B J, Oh S, Choi J Y and Huh J 2022 Nanotechnology 33 135703 [28] Deo B and Behera S N 1966 Phys. Rev. 141 738 [29] Lee S H 2007 Bull. Korean Chem. Soc. 28 1371 [30] Kawamura T, Kangawa Y and Kakimoto K 2005 J. Cryst. Growth 284 197 [31] Momeni K, Odegard G M and Yassar R S 2012 Acta Mater. 60 5117 [32] Binks D J and Grimes R W 1993 J. Am. Ceram. Soc. 76 2370 [33] Fan W, Xu H, Rosa A L, Frauenheim T and Zhang R Q 2007 Phys. Rev. B 76 073302 [34] Liu C R and Li J B 2011 Phys. Lett. A 375 2878 [35] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Synder G J 2011 Nature 473 66 [36] Patrick K S, Simon R P and Pawel K 2002 Phys. Rev. B 65 144306 [37] Hong Y, Zhang J C and Zeng X C 2016 J. Phys. Chem. C 120 26067 [38] Cherif O L and Patrice C 2012 J. Appl. Phys. 112 084907 [39] Chantrenne P and Ould L 2012 J. Heat Transfer 134 1 [40] Zhang M, Tang G H, Li Y F, Fu B and Wang X Y 2020 Int. J. Thermophys. 41 57 [41] Han D, Wang X Y, Ding W Y, Chen Y, Zhang J C, Xin G M and Cheng L 2019 Nanotechnology 30 075403 [42] Cheng Y H, Ma J L, Xu Y X, Sun G Q, Ruan X L and Luo X B 2022 Mater. Today Phys. 27 100776 [43] Yuldashev S U, Yalishev V S, Cho H D and Kang T W 2016 J. Nanosci. Nanotechnol. 16 1592 [44] Chen Q, Li X J, Wang Y, Wang J, Chang L J, Zhang Y W, Ma H A and Jia X P 2021 J. Alloy. Compd. 886 161200 [45] Chen Q, Zhang H N, Zhan Y W, Ma H A, Wang X C and Jia X P 2021 Ceram. Int. 48 9014 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|