Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050706    DOI: 10.1088/1674-1056/ad21f6
GENERAL Prev   Next  

Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting

Jia-Heng Xie(谢佳衡)1, Tao Yang(杨涛)2,†, and Jie Tang(唐介)3
1 Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China;
2 Department of Engineering Mechanics, Northwest Polytechnical University, Xi'an 710072, China;
3 Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace, Southwest Jiaotong University, Chengdu 610031, China
Abstract  Due to technical limitations, existing vibration isolation and energy harvesting (VIEH) devices have poor performance at low frequency. This paper proposes a new multilink-spring mechanism (MLSM) that can be used to solve this problem. The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed. It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power. By comparison with two special cases, the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics. The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines, and at the same time supply power to structural health monitoring devices.
Keywords:  multilink-spring mechanism      nonlinear dynamics      vibration isolation      energy harvester  
Received:  08 December 2023      Revised:  19 January 2024      Accepted manuscript online:  24 January 2024
PACS:  07.10.-h (Mechanical instruments and equipment)  
  05.20.Dd (Kinetic theory)  
  07.10.Fq (Vibration isolation)  
  45.20.dh (Energy conservation)  
Fund: Project supported by Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2022A1515010967 and 2023A1515012821), the National Natural Science Foundation of China (Grant Nos. 12002272 and 12272293), and Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province (Grant No. SZDKF-202101).
Corresponding Authors:  Tao Yang     E-mail:  yangtscn@nwpu.edu.cn

Cite this article: 

Jia-Heng Xie(谢佳衡), Tao Yang(杨涛), and Jie Tang(唐介) Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting 2024 Chin. Phys. B 33 050706

[1] Chai Y Y and Jing X J 2022 Nonlinear Dyn. 109 2383
[2] Fulton F and Sorokin V S 2023 Mech. Res. Commun. 130 104121
[3] Tian K Y, WangY L, CaoD Q and Yu K P 2023 Int. J. Mech. Sci. 265 108902
[4] Ibrahim R A 2008 J. Sound Vib. 314 371
[5] Liu Y Q, Ji W, Gu H S, Deng E J, Wang X and Song C F 2021 J. Mech. Sci. Technol. 35 2313
[6] Yoshikazu A, Takehiko A, Kosuke K, Kosei M and Takeshi M 2013 J. Sound Vib. 332 6063
[7] Yuan S J, Sun Y, Zhao J L, Meng K, Wang M, Pu H Y, Peng Y, Luo J and Xie S R 2020 J. Sound Vib. 482 115449
[8] Georgios I F, Ioannis A A and Evangelos J S 2023 Eng. Struct. 291 116389
[9] Zhang T, Shi P and Yue X K 2022 Mech. Syst. Signal Process. 179 109351
[10] Sun X T and Jing X J 2015 Mech. Syst. Signal Process. 62-63 149
[11] Yang T, Cao Q J and Hao Z F 2021 Mech. Syst. Signal Process. 155 107636
[12] Yan G, Qi W H, Shi J W, Yan H, Zou H X, Zhao L C, Wu Z Y, Fang X Y, Li X Y and Zhang W M 2022 J. Sound Vib. 525 116799
[13] Thomson A J and Thompson W A 1977 Acta Biotheor 26 19
[14] Mehran S, Vladislav S, Brian M and Sinniah I 2022 J. Sound Vib. 526 116822
[15] Yu C Y, Fu Q D, Zhang J R and Zhang N 2022 Mech. Syst. Signal Process. 180 109378
[16] Gatti G, Brennan M J and Tang B 2019 Mech. Syst. Signal Process. 125 4
[17] Orrego S, Shoele S, Ruas A, Doran K, Caggiano B, Mittal R and Kang S H 2017 Appl. Energy 194 212
[18] Collins I, Hossain M, Dettmer W and Masters I 2021 Renew. Sust. Energ. Rev. 151 111478
[19] Bai S M, Cui J, Zheng Y Q, Li G, Liu T S, Liu Y B, Hao C C and Xue C Y 2023 Appl. Energy 329 120292
[20] Chen J E, Zhang W, Yao M H, Liu J and Sun M 2020 Int. J. Nonlinear Sci. Numer. 21 1
[21] Liu Q, Qin W Y, Yang Y F and Zhou S X 2022 Mech. Syst. Signal Process. 178 109291
[22] Drezet C, Kacem N and Bouhaddi N 2018 Sens. Actuator A Phys. 283 54
[23] Jiang W A and Chen L Q 2016 Int. J. Non-Linear Mech. 85 174
[24] Yang K, Fei F, An H C 2019 Nonlinear Dyn. 96 2369
[25] Radeef Z 2023 Open Eng. 13 20220409
[26] Yang T, Zhang Y Q, Zhou S X, Fan H W and Zhang X H 2022 Commun. Nonlinear Sci. Numer. Simul. 111 106465
[27] Manh N V, Linh N N, Nguyen A T and Anh N D 2023 Mech. Res. Commun. 131 104157
[28] Liu H F, Dong W W, Chang Y L, Gao Y F and Li W C 2022 Rev. Sci. Instrum. 93 055001
[29] Zang J, Cao R Q, Zhang Y W, Fang B and Chen L Q 2021 Commun. Nonlinear Sci. Numer. Simul. 95 105620
[30] Yang Y K and Yang B T 2021 Int. J. Mech. Sci. 199 106411
[31] Wang K, Zhou J X, Ouyang H J, Chang Y P and Xu D L 2021 Mech. Syst. Signal Process. 151 107368
[32] Huang B, Wang P Z, Wang L, Yang S and Wu D Z 2020 Nanotechnol. Rev. 9 716
[33] Jin Y Z, Liu K F, Xiong L Y and Tang L H 2022 Mech. Syst. Signal Process. 181 109479
[34] Yang T, Zhang Y Q, Zhou S X, Fan H W and Zhang X H 2022 Commun. Nonlinear Sci. Numer. Simul. 111 106465
[35] Zhang Y Q, Yang T, Du H F and Zhou S X 2023 Mech. Syst. Signal Process. 184 109689
[36] Tan D G, Zhou J X, Wang K, Zhao X H, Wang Q and Xu D L 2022 Nano Energy 92 106746
[37] Huang X B and Yang B T 2021 Mech. Syst. Signal Process. 158 107797
[38] Luo H C, Liu J Y, Yang T, Zhang Y Q and Cao Q J 2022 Nano Energy 103 107755
[39] Yang X, Wang C and Lai S K 2020 Eng. Struct. 221 110789
[40] Lai S K, Wang C and Zhang L H 2019 Mech. Syst. Signal Process. 122 87
[41] Zhou S X, Lallart M and Erturk A 2022 J. Sound Vib. 528 116886
[42] Yang T, Xu H T, Tang J and Zhou S X 2023 Appl. Math. Model. 119 736
[43] Daqaq M F 2012 Nonlinear Dyn. 69 1063
[44] Yang T, Zhou S X, Litak G and Jing X J 2023 Nonlinear Dyn. 111 20525
[45] Yang T, Zhang Y Q and Zhou S X 2022 Sci. China Technol. Sci. 65 631
[46] Lu Z Q, Wu D, Ding H and Chen L Q 2021 Appl. Math. Model. 89 249
[47] Zou D L, Liu G Y, Rao Z S, Tan T, Zhang W M and Liao W H 2021 Mech. Syst. Signal Process. 147 107101
[48] Liu C R, Zhao R, Yu K P, Lee H P and Liao B P 2021 Energy 233 121146
[49] Zang J, Cao R Q, Fang B and Zhang Y W 2020 J. Sound Vib. 484 115534
[50] Yang T, Zhou S X, Fang S T, Qin W Y and Inman D J 2021 Appl. Phys. Rev. 8 031317
[51] Jiang W A and Chen L Q 2016 Int. J. Non-Linear Mech. 85 174
[1] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[2] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[3] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[4] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[5] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[6] The propagation of shape changing soliton in a nonuniform nonlocal media
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi. Chin. Phys. B, 2013, 22(8): 084209.
[7] Propagation of electromagnetic soliton in anisotropic biquadratic ferromagnetic medium
L. Kavitha, M. Saravanan, D. Gopi. Chin. Phys. B, 2013, 22(3): 030512.
[8] Nonlinear dynamics in wurtzite InN diodes under terahertz radiation
Feng Wei(冯伟) . Chin. Phys. B, 2012, 21(3): 037306.
[9] Directed segregation in compartmentalized bi-disperse granular gas
Sajjad Hussain Shah, Li Yin-Chang(李寅阊), Cui Fei-Fei(崔非非), Zhang Qi(张祺), and Hou Mei-Ying(厚美瑛) . Chin. Phys. B, 2012, 21(1): 014501.
[10] Complex network analysis in inclined oil--water two-phase flow
Gao Zhong-Ke(高忠科) and Jin Ning-De(金宁德) . Chin. Phys. B, 2009, 18(12): 5249-5258.
[11] Synchronization transition of limit-cycle system with homogeneous phase shifts
Zhang Ting-Xian(张廷宪) and Zheng Zhi-Gang(郑志刚). Chin. Phys. B, 2009, 18(10): 4187-4192.
[12] Control of period-one oscillation for all-optical clock division and clock recovery by optical pulse injection driven semiconductor laser
Li Jing-Xia (李静霞), Zhang Ming-Jiang (张明江), Niu Sheng-Xiao (牛生晓), Wang Yun-Cai (王云才). Chin. Phys. B, 2008, 17(12): 4516-4522.
No Suggested Reading articles found!