Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037306    DOI: 10.1088/1674-1056/21/3/037306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nonlinear dynamics in wurtzite InN diodes under terahertz radiation

Feng Wei(冯伟)
Department of Physics, Jiangsu University, Zhenjiang 212013, China
Abstract  We carry out a theoretical study of nonlinear dynamics in terahertz-driven n+nn+ wurtzite InN diodes by using time-dependent drift diffusion equations. A cooperative nonlinear oscillatory mode appears due to the negative differential mobility effect, which is the unique feature of wurtzite InN aroused by its strong nonparabolicity of the $\varGamma_1$ valley. The appearance of different nonlinear oscillatory modes, including periodic and chaotic states, is attributed to the competition between the self-sustained oscillation and the external driving oscillation. The transitions between the periodic and chaotic states are carefully investigated using chaos-detecting methods, such as the bifurcation diagram, the Fourier spectrum and the first return map. The resulting bifurcation diagram displays an interesting and complex transition picture with the driving amplitude as the control parameter.
Keywords:  nonlinear dynamics      terahertz radiation      wurtzite InN  
Received:  09 September 2011      Revised:  03 October 2011      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  73.50.Fq (High-field and nonlinear effects)  
  85.30.Fg (Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by Jiangsu University Initial funding for advanced talents, China (Grant No. 11JDG037).
Corresponding Authors:  Feng Wei,xfhe@ujs.edu.cn     E-mail:  xfhe@ujs.edu.cn

Cite this article: 

Feng Wei(冯伟) Nonlinear dynamics in wurtzite InN diodes under terahertz radiation 2012 Chin. Phys. B 21 037306

[1] Wu J, Walukiewicz W, Shan W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Phys. Rev. B 66 201403
[2] Nag B R 2003 Phys. Status Solidi B 237 R1
[3] Foutz B E, O'Leary S K, Shur M S and Eastman L F 1999 J. Appl. Phys. 85 7727
[4] Tsen K T, Poweleit C, Ferry D K, Lu H and Schaff W J 2005 Appl. Phys. Lett. 86 222103
[5] Mahboob I, Veal T D, McConville C F, Lu H and Schaff W J 2004 Phys. Rev. Lett. 92 036804
[6] Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev V V, Ivanov S V, Bechstedt F, Furthmuller J, Harima H, Mudryi V, Aderhold J, Semchinova O and Graul J 2002 Phys. Status Solidi B 229 R1
[7] Nanishi Y, Saito Y and Yamaguchi T 2003 Jpn. J. Appl. Phys. Part 1 42 2549
[8] Swartz C H, Tomkins R P, Myers T H, Lu H and Schaff W J 2005 Phys. Status Solidi C 2 2250
[9] Rinke P, Winkelnkemper M, Qteish A, Bimberg D, Neugebauer J and Scheffler M 2008 Phys. Rev. B 77 075202
[10] Fuchs F, Furthm黮ler J, Bechstedt F, Shishkin M and Kresse G 2007 Phys. Rev. B 76 115109
[11] Polyakov V M, Schwierz F, Fuchs F, Furthm黮ler J and Bechstedt F 2009 Appl. Phys. Lett. 94 022102
[12] Bhuiyan A G, Hashimoto A and Yamamoto A 2003 J. Appl. Phys. 94 2779
[13] O'Leary S K, Foutz B E, Shur M S and Eastman L F 2006 Appl. Phys. Lett. 88 152113
[14] Lu H, Schaff W J and Eastman L F 2004 J. Appl. Phys. 96 3577
[15] Yamamoto A, Tsujino M, Ohkubo M and Hashimoto A 1994 Sol. Energy Mater. Sol. Cells 35 53
[16] Bellotti E, Doshi B K, Blennan K F, Albrecht J D and Ruden P P 1999 J. Appl. Phys. 85 916
[17] Veal T D, McConville C F and Schaff W J 2009 Indium Nitride and Related Alloys (Florida: CRC Press)
[18] Fitzer N, Kuligk A, Redmer R, Städele M, Goodnick S M and Schattke W 2003 Phys. Rev. B 67 201201
[19] Cao J C 2003 Phys. Rev. Lett. 91 237401
[20] Feng W and Cao J C 2009 J. Appl. Phys. 106 033708
[21] Wu J Q 2009 J. Appl. Phys. 106 011101
[22] Rinkea P, Scheffler M, Qteish A, Winkelnkemperb M, Bimberg D and Neugebauer J 2006 Appl. Phys. Lett. 89 161919
[23] Stampfl C and Van de Walle C G 1999 Phys. Rev. B 59 5521
[24] Walukiewicz W, Li S X, Wu J, Yu K M, Ager III J W, Haller E E, Lu H and Schaff W 2004 J. Cryst. Growth 269 119
[25] Hauser J R, Glisson T H and Littlejohn M A 1979 Solid-State Electronics 22 487
[26] Polyakov V M and Schwierz F 2006 Appl. Phys. Lett. 88 032101
[27] Masyukov N A and Dmitriev A V 2011 J. Appl. Phys. 109 023706
[28] Cao J C, Liu H C and Lei X L 2000 J. Appl. Phys. 87 2867
[29] Feng W and Cao J C 2008 J. Appl. Phys. 104 013111
[30] Zhang Y H, Kastrup J, Klann R, Ploog K H and Grahn H T 1996 Phys. Rev. Lett. 77 3001
[31] Cao J C, Liu H C, Lei X L and Perera A G U 2001 Phys. Rev. B 63 115308
[32] Wang C and Cao J C 2009 Chaos 19 033136
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[3] Effect of terahertz pulse on gene expression in human eye cells
Jin-Wu Zhao(赵晋武), Ming-Xia He(何明霞), Li-Jie Dong(东莉洁), Shao-Xian Li(李绍限), Li-Yuan Liu(刘立媛), Shao-Chong Bu(步绍翀), Chun-Mei Ouyang(欧阳春梅), Peng-Fei Wang(王鹏騛), Long-Ling Sun(孙珑玲). Chin. Phys. B, 2019, 28(4): 048703.
[4] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[5] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[6] Tunable terahertz radiation from arbitrary profile dielectric grating coated with graphene excited by an electron beam
Zhao Tao (赵陶), Zhong Ren-Bin (钟任斌), Hu Min (胡旻), Chen Xiao-Xing (陈晓行), Zhang Ping (张平), Gong Sen (龚森), Liu Sheng-Gang (刘盛纲). Chin. Phys. B, 2015, 24(9): 094102.
[7] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[8] The propagation of shape changing soliton in a nonuniform nonlocal media
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi. Chin. Phys. B, 2013, 22(8): 084209.
[9] Propagation of electromagnetic soliton in anisotropic biquadratic ferromagnetic medium
L. Kavitha, M. Saravanan, D. Gopi. Chin. Phys. B, 2013, 22(3): 030512.
[10] Directed segregation in compartmentalized bi-disperse granular gas
Sajjad Hussain Shah, Li Yin-Chang(李寅阊), Cui Fei-Fei(崔非非), Zhang Qi(张祺), and Hou Mei-Ying(厚美瑛) . Chin. Phys. B, 2012, 21(1): 014501.
[11] Complex network analysis in inclined oil--water two-phase flow
Gao Zhong-Ke(高忠科) and Jin Ning-De(金宁德) . Chin. Phys. B, 2009, 18(12): 5249-5258.
[12] Synchronization transition of limit-cycle system with homogeneous phase shifts
Zhang Ting-Xian(张廷宪) and Zheng Zhi-Gang(郑志刚). Chin. Phys. B, 2009, 18(10): 4187-4192.
[13] Resonant detection of terahertz radiation utilizing plasma waves in high-electron-mobility transistors
Ma Ming-Rui(马明瑞), Chen Yu-Ling(陈钰玲), Wang Li-Min(王立敏), and Wang Chang(王长). Chin. Phys. B, 2008, 17(5): 1854-1857.
[14] Intense Cherenkov-type terahertz electromagnetic radiation from ultrafast laser--plasma interaction
Hu Qiang-Lin(胡强林), Liu Shi-Bing(刘世炳), and Li Wei(李维) . Chin. Phys. B, 2008, 17(3): 1050-1054.
[15] Control of period-one oscillation for all-optical clock division and clock recovery by optical pulse injection driven semiconductor laser
Li Jing-Xia (李静霞), Zhang Ming-Jiang (张明江), Niu Sheng-Xiao (牛生晓), Wang Yun-Cai (王云才). Chin. Phys. B, 2008, 17(12): 4516-4522.
No Suggested Reading articles found!