CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nonlinear dynamics in wurtzite InN diodes under terahertz radiation |
Feng Wei(冯伟)† |
Department of Physics, Jiangsu University, Zhenjiang 212013, China |
|
|
Abstract We carry out a theoretical study of nonlinear dynamics in terahertz-driven n+nn+ wurtzite InN diodes by using time-dependent drift diffusion equations. A cooperative nonlinear oscillatory mode appears due to the negative differential mobility effect, which is the unique feature of wurtzite InN aroused by its strong nonparabolicity of the $\varGamma_1$ valley. The appearance of different nonlinear oscillatory modes, including periodic and chaotic states, is attributed to the competition between the self-sustained oscillation and the external driving oscillation. The transitions between the periodic and chaotic states are carefully investigated using chaos-detecting methods, such as the bifurcation diagram, the Fourier spectrum and the first return map. The resulting bifurcation diagram displays an interesting and complex transition picture with the driving amplitude as the control parameter.
|
Received: 09 September 2011
Revised: 03 October 2011
Accepted manuscript online:
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.50.Fq
|
(High-field and nonlinear effects)
|
|
85.30.Fg
|
(Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by Jiangsu University Initial funding for advanced talents, China (Grant No. 11JDG037). |
Corresponding Authors:
Feng Wei,xfhe@ujs.edu.cn
E-mail: xfhe@ujs.edu.cn
|
Cite this article:
Feng Wei(冯伟) Nonlinear dynamics in wurtzite InN diodes under terahertz radiation 2012 Chin. Phys. B 21 037306
|
[1] Wu J, Walukiewicz W, Shan W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Phys. Rev. B 66 201403[2] Nag B R 2003 Phys. Status Solidi B 237 R1[3] Foutz B E, O'Leary S K, Shur M S and Eastman L F 1999 J. Appl. Phys. 85 7727[4] Tsen K T, Poweleit C, Ferry D K, Lu H and Schaff W J 2005 Appl. Phys. Lett. 86 222103[5] Mahboob I, Veal T D, McConville C F, Lu H and Schaff W J 2004 Phys. Rev. Lett. 92 036804[6] Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev V V, Ivanov S V, Bechstedt F, Furthmuller J, Harima H, Mudryi V, Aderhold J, Semchinova O and Graul J 2002 Phys. Status Solidi B 229 R1[7] Nanishi Y, Saito Y and Yamaguchi T 2003 Jpn. J. Appl. Phys. Part 1 42 2549[8] Swartz C H, Tomkins R P, Myers T H, Lu H and Schaff W J 2005 Phys. Status Solidi C 2 2250[9] Rinke P, Winkelnkemper M, Qteish A, Bimberg D, Neugebauer J and Scheffler M 2008 Phys. Rev. B 77 075202[10] Fuchs F, Furthm黮ler J, Bechstedt F, Shishkin M and Kresse G 2007 Phys. Rev. B 76 115109[11] Polyakov V M, Schwierz F, Fuchs F, Furthm黮ler J and Bechstedt F 2009 Appl. Phys. Lett. 94 022102[12] Bhuiyan A G, Hashimoto A and Yamamoto A 2003 J. Appl. Phys. 94 2779[13] O'Leary S K, Foutz B E, Shur M S and Eastman L F 2006 Appl. Phys. Lett. 88 152113[14] Lu H, Schaff W J and Eastman L F 2004 J. Appl. Phys. 96 3577[15] Yamamoto A, Tsujino M, Ohkubo M and Hashimoto A 1994 Sol. Energy Mater. Sol. Cells 35 53[16] Bellotti E, Doshi B K, Blennan K F, Albrecht J D and Ruden P P 1999 J. Appl. Phys. 85 916[17] Veal T D, McConville C F and Schaff W J 2009 Indium Nitride and Related Alloys (Florida: CRC Press)[18] Fitzer N, Kuligk A, Redmer R, Städele M, Goodnick S M and Schattke W 2003 Phys. Rev. B 67 201201[19] Cao J C 2003 Phys. Rev. Lett. 91 237401[20] Feng W and Cao J C 2009 J. Appl. Phys. 106 033708[21] Wu J Q 2009 J. Appl. Phys. 106 011101[22] Rinkea P, Scheffler M, Qteish A, Winkelnkemperb M, Bimberg D and Neugebauer J 2006 Appl. Phys. Lett. 89 161919[23] Stampfl C and Van de Walle C G 1999 Phys. Rev. B 59 5521[24] Walukiewicz W, Li S X, Wu J, Yu K M, Ager III J W, Haller E E, Lu H and Schaff W 2004 J. Cryst. Growth 269 119[25] Hauser J R, Glisson T H and Littlejohn M A 1979 Solid-State Electronics 22 487[26] Polyakov V M and Schwierz F 2006 Appl. Phys. Lett. 88 032101[27] Masyukov N A and Dmitriev A V 2011 J. Appl. Phys. 109 023706[28] Cao J C, Liu H C and Lei X L 2000 J. Appl. Phys. 87 2867[29] Feng W and Cao J C 2008 J. Appl. Phys. 104 013111[30] Zhang Y H, Kastrup J, Klann R, Ploog K H and Grahn H T 1996 Phys. Rev. Lett. 77 3001[31] Cao J C, Liu H C, Lei X L and Perera A G U 2001 Phys. Rev. B 63 115308[32] Wang C and Cao J C 2009 Chaos 19 033136 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|