Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 053101    DOI: 10.1088/1674-1056/ad20dc
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Spectroscopy and molecule opacity investigation on excited states of SiS

Rui Li(李瑞)1,2, Haonan Lv(吕浩男)3, Jiqun Sang(桑纪群)3, Xiaohua Liu(刘晓华)3, Guiying Liang(梁桂颖)4,2, and Yong Wu(吴勇)2,5,†
1 College of Teacher Education, Qiqihar University, Qiqihar 161006, China;
2 National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China;
4 School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun 130052, China;
5 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract  The SiS molecule, which plays a significant role in space, has attracted a great deal of attention for many years. Due to complex interactions among its low-lying electronic states, precise information regarding the molecular structure of SiS is limited. To obtain accurate information about the structure of its excited states, the high-precision multireference configuration interaction (MRCI) method has been utilized. This method is used to calculate the potential energy curves (PECs) of the 18$\Lambda $-S states corresponding to the lowest dissociation limit of SiS. The core-valence correlation effect, Davidson's correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation. Based on the calculated PECs, the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results. The transition dipole moments (TDMs) and dipole moments (DMs) are determined by the MRCI method. In addition, the abrupt variations of the DMs for the 1$^{5}\Sigma^{+}$ and 2$^{5}\Sigma^{+}$ states at the avoided crossing point are attributed to the variation of the electronic configuration. The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures. With increasing temperature, the expanding population of excited states blurs the band boundaries.
Keywords:  SiS      opacity      excited state      spectroscopic constant      configuration interaction  
Received:  30 November 2023      Revised:  10 January 2024      Accepted manuscript online:  22 January 2024
PACS:  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2022A026), the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant No. 11934004), Fundamental Research Funds in Heilongjiang Province Universities, China (Grant No. 145109309), and Foundation of National Key Laboratory of Computational Physics (Grant No. 6142A05QN22006).
Corresponding Authors:  Yong Wu     E-mail:  wu_yong@iapcm.ac.cn

Cite this article: 

Rui Li(李瑞), Haonan Lv(吕浩男), Jiqun Sang(桑纪群), Xiaohua Liu(刘晓华), Guiying Liang(梁桂颖), and Yong Wu(吴勇) Spectroscopy and molecule opacity investigation on excited states of SiS 2024 Chin. Phys. B 33 053101

[1] Upadhyay A, Conway E K, Tennyson J and Yurchenko S N 2018 Mon. Not. R. Astron. Soc. 477 1520
[2] Cami J, Sloan G C, Markwick-Kemper A J, Zijlstra A A, Bauschlicher C W, Matsuura M, Decin L and Hony S 2009 Astrophys. J. 690 L122
[3] Sloan G C, Hony S, Smolders K, Decin L, Zijlstra A A, Feast M W, Van Wyk F, Van Loon J Th, Groenewegen M A T and Sahai R 2011 Astrophys. J. 729 121
[4] Danilovich T, Richards A M S, Karakas A I, Van de Sande M, Decin L and De Ceuster F 2019 Mon. Not. R. Astron. Soc. 484 494
[5] Ziurys L M 1991 Astrophys. J. 379 260
[6] Zanchet A, Roncero O, Agúndez M and Cernicharo J 2018 Astrophys. J. 862 38
[7] Barrow R F and Jevons W 1938 Proc. Math. Phys. Eng. Sci. 169 45
[8] Vago E E and Barrow R F 1946 Proc. Phys. Soc. 58 538
[9] Nair K P R, Singh R B and Rai D K 1965 J. Chem. Phys. 43 3570
[10] Gopal S, Lakshminarayana G and Narasimham N A 1980 J. Phys. B: Atom. Mol. Phys. 13 3781
[11] Sunanda K, Gopal S, Shetty B J and Lakshminarayana G 1989 J. Quant. Spectrosc. Radiat. Transfer. 42 631
[12] Prieto L V, Cernicharo J, Quintana-Lacaci G, Agúndez M, Castro- Carrizo A, Fonfría J P, Marcelino N, Zuñiga J, Requena A, Bastida A, Lique F and Guelin M 2015 Astrophys. J. Lett. 805 L13
[13] Robbe J M, Lefebvre-Brion H and Gottscho R A 1981 J. Mol. Spectrosc. 85 215
[14] Chattopadhyaya S, Chattopadhyay A and Das K K 2002 J. Phys. Chem. A 106 833
[15] Li R, Zhang X M, Li Q N, Luo W, Jin M X, Xu H F and Yan B 2014 Acta Phys. Sin. 63 113102 (in Chinese)
[16] Fan Q, Tian H, Fan Z, Li H, Fu J, Ma J and Xie F 2023 Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 287 122067
[17] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 Wires. Comput. Mol. Sci. 2 242
[18] De Jong W A, Harrison R J and Dixon D A 2001 J. Chem. Phys. 114 48
[19] Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548
[20] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[21] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[22] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[23] Werner HJ and Knowles P J 1988 J. Chem. Phys. 89 5803
[24] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[25] Hess B A 1986 Phys. Rev. A 33 3742
[26] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[27] Sanz M E, McCarthy M C and Thaddeus P 2003 J. Chem. Phys. 119 11715
[28] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV. Constants of diatomic molecules (New York: Van Nostrand)
[29] Harris S M, Gottscho R A, Field R W and Barrow R F 1982 J. Mol. Spectrosc. 91 35
[30] Murty A N and Curl Jr R F 1969 J. Mol. Spectrosc. 30 102
[31] Coriani S, Marchesan D, Gauss J, Hättig C, Helgaker T and Jørgensen P 2005 J. Chem. Phys. 123 184107
[32] Green G J and Gole J L 1980 Chem. Phys. 46 67
[33] Coxon J A and Hajigeorgiou P G 1992 Chem. Phys. 167 327
[34] Fan Q C, Tian H R, Fan Z X, Li H D, Fu J, Ma J and Xie F 2023 Spectrochim. Acta A 287 122067
[35] Mummigatti V M and Jyoti B G 1977 Phys. Lett. A 63 88
[36] Li R, Sang J Q, Lin X H, Li J J, Liang G Y and Wu Y 2022 Chin. Phys. B 31 103101
[37] Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R and Wu Y 2019 Chin. Phys. B 28 053101
[38] Liang G Y, Peng Y G, Li R, Wu Y and Wang J G 2020 Chin. Phys. Lett. 37 123101
[39] Liang G Y, Peng Y G, Li R, Wu Y and Wang J G 2020 Chin. Phys. B 29 023101
[1] Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in LWFA
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明). Chin. Phys. B, 2024, 33(6): 064101.
[2] Morphological analysis for thermodynamics of cavitation collapse near fractal solid wall
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), Qingbang Han(韩庆邦). Chin. Phys. B, 2024, 33(6): 064701.
[3] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[4] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[5] Dynamic response of a thermal transistor to time-varying signals
Qinli Ruan(阮琴丽), Wenjun Liu(刘文君), and Lei Wang(王雷). Chin. Phys. B, 2024, 33(5): 056301.
[6] Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
Ming-Xing Wu(吴明兴), Kai Xie(谢楷), Yan Liu(刘艳), Han Xu(徐晗), Bao Zhang(张宝), and De-Yang Tian(田得阳). Chin. Phys. B, 2024, 33(5): 055204.
[7] Enhanced superelasticity and reversible elastocaloric effect in nano-grained NiTi alloys with low stress hysteresis
Min Zhou(周敏), Wei Wang(王维), Haojian Su(苏浩健), Zhongjun Hu(胡忠军), and Laifeng Li(李来风). Chin. Phys. B, 2024, 33(5): 056501.
[8] Terahertz high-sensitivity SIS mixer based on Nb-AlN-NbN hybrid superconducting tunnel junctions
Bo-Liang Liu(刘博梁), Dong Liu(刘冬), Ming Yao(姚明), Jun-Da Jin(金骏达), Zheng Wang(王争), Jing Li(李婧), Sheng-Cai Shi(史生才), Artem Chekushkin, Michael Fominsky, Lyudmila Filippenko, and Valery Koshelets. Chin. Phys. B, 2024, 33(5): 058501.
[9] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[10] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[11] Non-Gaussian quantum states generated via quantum catalysis and their statistical properties
Xiao-Yan Zhang(张晓燕), Chun-Yan Yang(杨春燕), Ji-Suo Wang(王继锁), and Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2024, 33(4): 040308.
[12] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[13] Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才). Chin. Phys. B, 2024, 33(3): 037504.
[14] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[15] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
No Suggested Reading articles found!