Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 053101    DOI: 10.1088/1674-1056/ad20dc
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Spectroscopy and molecule opacity investigation on excited states of SiS

Rui Li(李瑞)1,2, Haonan Lv(吕浩男)3, Jiqun Sang(桑纪群)3, Xiaohua Liu(刘晓华)3, Guiying Liang(梁桂颖)4,2, and Yong Wu(吴勇)2,5,†
1 College of Teacher Education, Qiqihar University, Qiqihar 161006, China;
2 National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China;
4 School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun 130052, China;
5 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract  The SiS molecule, which plays a significant role in space, has attracted a great deal of attention for many years. Due to complex interactions among its low-lying electronic states, precise information regarding the molecular structure of SiS is limited. To obtain accurate information about the structure of its excited states, the high-precision multireference configuration interaction (MRCI) method has been utilized. This method is used to calculate the potential energy curves (PECs) of the 18 Λ—S states corresponding to the lowest dissociation limit of SiS. The core—valence correlation effect, Davidson's correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation. Based on the calculated PECs, the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results. The transition dipole moments (TDMs) and dipole moments (DMs) are determined by the MRCI method. In addition, the abrupt variations of the DMs for the 15Σ+ and 25Σ+ states at the avoided crossing point are attributed to the variation of the electronic configuration. The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures. With increasing temperature, the expanding population of excited states blurs the band boundaries.
Keywords:  SiS      opacity      excited state      spectroscopic constant      configuration interaction  
Received:  30 November 2023      Revised:  10 January 2024      Accepted manuscript online:  22 January 2024
PACS:  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2022A026), the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant No. 11934004), Fundamental Research Funds in Heilongjiang Province Universities, China (Grant No. 145109309), and Foundation of National Key Laboratory of Computational Physics (Grant No. 6142A05QN22006).
Corresponding Authors:  Yong Wu,E-mail:wu_yong@iapcm.ac.cn     E-mail:  wu_yong@iapcm.ac.cn

Cite this article: 

Rui Li(李瑞), Haonan Lv(吕浩男), Jiqun Sang(桑纪群), Xiaohua Liu(刘晓华), Guiying Liang(梁桂颖), and Yong Wu(吴勇) Spectroscopy and molecule opacity investigation on excited states of SiS 2024 Chin. Phys. B 33 053101

[1] Upadhyay A, Conway E K, Tennyson J and Yurchenko S N 2018 Mon. Not. R. Astron. Soc. 477 1520
[2] Cami J, Sloan G C, Markwick-Kemper A J, Zijlstra A A, Bauschlicher C W, Matsuura M, Decin L and Hony S 2009 Astrophys. J. 690 L122
[3] Sloan G C, Hony S, Smolders K, Decin L, Zijlstra A A, Feast M W, Van Wyk F, Van Loon J Th, Groenewegen M A T and Sahai R 2011 Astrophys. J. 729 121
[4] Danilovich T, Richards A M S, Karakas A I, Van de Sande M, Decin L and De Ceuster F 2019 Mon. Not. R. Astron. Soc. 484 494
[5] Ziurys L M 1991 Astrophys. J. 379 260
[6] Zanchet A, Roncero O, Agúndez M and Cernicharo J 2018 Astrophys. J. 862 38
[7] Barrow R F and Jevons W 1938 Proc. Math. Phys. Eng. Sci. 169 45
[8] Vago E E and Barrow R F 1946 Proc. Phys. Soc. 58 538
[9] Nair K P R, Singh R B and Rai D K 1965 J. Chem. Phys. 43 3570
[10] Gopal S, Lakshminarayana G and Narasimham N A 1980 J. Phys. B:Atom. Mol. Phys. 13 3781
[11] Sunanda K, Gopal S, Shetty B J and Lakshminarayana G 1989 J. Quant. Spectrosc. Radiat. Transfer. 42 631
[12] Prieto L V, Cernicharo J, Quintana-Lacaci G, Agúndez M, Castro-Carrizo A, Fonfría J P, Marcelino N, Zúñiga J, Requena A, Bastida A, Lique F and Guélin M 2015 Astrophys. J. Lett. 805 L13
[13] Robbe J M, Lefebvre-Brion H and Gottscho R A 1981 J. Mol. Spectrosc. 85 215
[14] Chattopadhyaya S, Chattopadhyay A and Das K K 2002 J. Phys. Chem. A 106 833
[15] Li R, Zhang X M, Li Q N, Luo W, Jin M X, Xu H F and Yan B 2014 Acta Phys. Sin. 63 113102 (in Chinese)
[16] Fan Q, Tian H, Fan Z, Li H, Fu J, Ma J and Xie F 2023 Spectrochim. Acta. A:Mol. Biomol. Spectrosc. 287 122067
[17] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 Wires. Comput. Mol. Sci. 2 242
[18] De Jong W A, Harrison R J and Dixon D A 2001 J. Chem. Phys. 114 48
[19] Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548
[20] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[21] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[22] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[23] Werner HJ and Knowles P J 1988 J. Chem. Phys. 89 5803
[24] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[25] Hess B A 1986 Phys. Rev. A 33 3742
[26] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[27] Sanz M E, McCarthy M C and Thaddeus P 2003 J. Chem. Phys. 119 11715
[28] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV. Constants of diatomic molecules (New York:Van Nostrand)
[29] Harris S M, Gottscho R A, Field R W and Barrow R F 1982 J. Mol. Spectrosc. 91 35
[30] Murty A N and Curl Jr R F 1969 J. Mol. Spectrosc. 30 102
[31] Coriani S, Marchesan D, Gauss J, Hättig C, Helgaker T and Jorgensen P 2005 J. Chem. Phys. 123 184107
[32] Green G J and Gole J L 1980 Chem. Phys. 46 67
[33] Coxon J A and Hajigeorgiou P G 1992 Chem. Phys. 167 327
[34] Fan Q C, Tian H R, Fan Z X, Li H D, Fu J, Ma J and Xie F 2023 Spectrochim. Acta A 287 122067
[35] Mummigatti V M and Jyoti B G 1977 Phys. Lett. A 63 88
[36] Li R, Sang J Q, Lin X H, Li J J, Liang G Y and Wu Y 2022 Chin. Phys. B 31 103101
[37] Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R and Wu Y 2019 Chin. Phys. B 28 053101
[38] Liang G Y, Peng Y G, Li R, Wu Y and Wang J G 2020 Chin. Phys. Lett. 37 123101
[39] Liang G Y, Peng Y G, Li R, Wu Y and Wang J G 2020 Chin. Phys. B 29 023101
[1] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[2] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[3] Non-Gaussian quantum states generated via quantum catalysis and their statistical properties
Xiao-Yan Zhang(张晓燕), Chun-Yan Yang(杨春燕), Ji-Suo Wang(王继锁), and Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2024, 33(4): 040308.
[4] Decoupling of temporal/spatial broadening effects in Doppler wind LiDAR by 2D spectral analysis
Zhen Liu(刘珍), Yun-Peng Zhang(张云鹏), Xiao-Peng Zhu(竹孝鹏), Ji-Qiao Liu(刘继桥), De-Cang Bi(毕德仓), and Wei-Biao Chen(陈卫标). Chin. Phys. B, 2024, 33(3): 034214.
[5] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[6] Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才). Chin. Phys. B, 2024, 33(3): 037504.
[7] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[8] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[9] Ultrafast photoemission electron microscopy: A multidimensional probe of nonequilibrium physics
Yanan Dai(戴亚南). Chin. Phys. B, 2024, 33(3): 038703.
[10] Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design
Xianglin Huang(黄香林), Ying Wang(王英), Huixiang Huang(黄慧香), Li Duan(段理), and Tingting Guo(郭婷婷). Chin. Phys. B, 2024, 33(1): 017303.
[11] Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires
Guang-Yu Zhu(祝光宇), Ji-Ai Ning(宁纪爱), Jian-Kun Wang(王建坤), Xin-Jie Liu(刘心洁), Jia-Jie Yang(杨佳洁), Ben-Chuan Lin(林本川), and Shuo Wang(王硕). Chin. Phys. B, 2024, 33(1): 017305.
[12] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[13] Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Yi-Wei Liu(刘益维), Xiao-Ping Ouyang(欧阳晓平), Jin-Xin Zhang(张晋新), Wu-Ying Ma(马武英), Feng-Qi Zhang(张凤祁), Ru-Xue Bai(白如雪), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2024, 33(1): 016104.
[14] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[15] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
No Suggested Reading articles found!