Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120203    DOI: 10.1088/1674-1056/ac9cbf
GENERAL Prev   Next  

Sparse identification method of extracting hybrid energy harvesting system from observed data

Ya-Hui Sun(孙亚辉)1,2, Yuan-Hui Zeng(曾远辉)1, and Yong-Ge Yang(杨勇歌)1,†
1 School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China;
2 State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Hybrid energy harvesters under external excitation have complex dynamical behavior and the superiority of promoting energy harvesting efficiency. Sometimes, it is difficult to model the governing equations of the hybrid energy harvesting system precisely, especially under external excitation. Accompanied with machine learning, data-driven methods play an important role in discovering the governing equations from massive datasets. Recently, there are many studies of data-driven models done in aspect of ordinary differential equations and stochastic differential equations (SDEs). However, few studies discover the governing equations for the hybrid energy harvesting system under harmonic excitation and Gaussian white noise (GWN). Thus, in this paper, a data-driven approach, with least square and sparse constraint, is devised to discover the governing equations of the systems from observed data. Firstly, the algorithm processing and pseudo code are given. Then, the effectiveness and accuracy of the method are verified by taking two examples with harmonic excitation and GWN, respectively. For harmonic excitation, all coefficients of the system can be simultaneously learned. For GWN, we approximate the drift term and diffusion term by using the Kramers-Moyal formulas, and separately learn the coefficients of the drift term and diffusion term. Cross-validation (CV) and mean-square error (MSE) are utilized to obtain the optimal number of iterations. Finally, the comparisons between true values and learned values are depicted to demonstrate that the approach is well utilized to obtain the governing equations for the hybrid energy harvester under harmonic excitation and GWN.
Keywords:  data-driven      hybrid energy harvester      harmonic excitation      Gaussian white noise  
Received:  15 August 2022      Revised:  13 October 2022      Accepted manuscript online:  21 October 2022
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Ca (Noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12002089 and 11902081) and Project of Science and Technology of Guangzhou (Grant No. 202201010326).
Corresponding Authors:  Yong-Ge Yang     E-mail:  yonggeyang@163.com

Cite this article: 

Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌) Sparse identification method of extracting hybrid energy harvesting system from observed data 2022 Chin. Phys. B 31 120203

[1] Liu Q, Xu Y and Kurths J 2020 Commun. Nonlinear Sci. Numer. Simul. 84 105184
[2] Yang Y G, Xu W, Sun Y H and Gu X D 2015 Chin. Phys. B 25 020201
[3] Zhang Y, Jin Y and Li Y 2021 Phys. D 422 132908
[4] Daqaq M F 2012 Nonlinear Dyn. 69 1063
[5] Seuaciuc-Osório T and Daqaq M F 2010 J. Sound Vib. 329 2497
[6] Foong F M, Thein C K, Ooi B L and Yurchenko D 2019 Mech. Syst. Signal Process. 116 129
[7] Dragunov V P, Dorzhiev V Y, Ostertak D I and Atuchin V V 2018 Sensors Actuators, A Phys. 272 259
[8] Ibrahim A, Ramini A and Towfighian S 2018 J. Sound Vib. 416 111
[9] Siddique A R M, Mahmud S and Heyst B V 2015 Energy Convers. Manag. 106 728
[10] Panyam M and Daqaq M F 2017 J. Sound Vib. 386 336
[11] Karami M A and Inman D J 2011 J. Sound Vib. 330 5583
[12] Xia H, Chen R and Ren L 2015 Sensors Actuators, A Phys. 234 87
[13] Jiang J, Xu W, Han P and Niu L 2022 Chin. Phys. B 31 060203
[14] Wang X, Duan J, Li X and Song R 2018 Appl. Math. Comput. 337 618
[15] Zhou X Y, Gao S Q, Liu H P and Guan Y W 2017 Smart Mater. Struct. 26 015008
[16] Sengha G G, Fokou Kenfack W, Siewe Siewe M, Tabi C B and Kofane T C 2020 Commun. Nonlinear Sci. Numer. Simul. 90 105364
[17] Foupouapouognigni O, Nono Dueyou Buckjohn C, Siewe Siewe M and Tchawoua C 2018 Phys. A 509 346
[18] Sun Y H, Yang Y G, Zhang Y and Xu W 2021 Chaos 31 013111
[19] Mokem Fokou I S, Nono Dueyou Buckjohn C, Siewe Siewe M and Tchawoua C 2018 Commun. Nonlinear Sci. Numer. Simul. 56 177
[20] Yang T and Cao Q 2019 Mech. Syst. Signal Process. 121 745
[21] Brunton S L and Kutz J N 2019 Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (Cambridge: University Press) pp. 229-275
[22] Chang L J, Mo Y F, Ling L M and Zeng D L 2022 Chin. Phys. B 31 060201
[23] Schwantes C R and Pande V S 2015 J. Chem. Theory Comput. 11 600
[24] Gagne D J, Christensen H M, Subramanian A C and Monahan A H 2020 J. Adv. Model. Earth Syst. 12 e2019MS001896
[25] Canhoto A I 2021 J. Bus. Res. 131 441
[26] Kutz J N, Brunton S L, Brunton B W and Proctor J L 2016 Dynamic mode decomposition: data-driven modeling of complex systems (Society for Industrial and Applied Mathematics) pp. 195-206
[27] Brunton S L, Proctor J L, Kutz J N and Bialek W 2016 Proc. Natl. Acad. Sci. USA 113 3932
[28] Boninsegna L, Nüske F and Clementi C 2018 J. Chem. Phys. 148 241723
[29] Rudy S H, Nathan Kutz J and Brunton S L 2019 J. Comput. Phys. 396 483
[30] Dai M, Duan J, Liao J and Wang X 2021 Appl. Math. Comput. 397 125927
[31] Lu P and Lermusiaux P F 2021 Phys. D 427 133003
[32] Huang Y and Li Y 2022 Chin. Phys. B 31 070501
[33] Wu D, Fu M and Duan J 2019 Chaos 29 093122
[34] Zhang Y, Duan J, Jin Y and Li Y 2020 Chaos 30 1
[35] Lu Y and Duan J 2020 Chaos 30 1
[36] Li Y and Duan J 2022 J. Stat. Phys. 186 1
[37] Li Y, Lu Y, Xu S and Duan J 2022 J. Stat. Mech. Theory Exp. 023405
[38] Li Y and Duan J 2021 Phys. D 417 132830
[39] Xu M, Jin X, Wang Y and Huang Z 2014 Nonlinear Dyn. 78 1451
[40] Huang D, Zhou S and Litak G 2019 Commun. Nonlinear Sci. Numer. Simul. 69 270
[41] Champion K, Lusch B, Nathan Kutz J and Brunton S L 2019 Proc. Natl. Acad. Sci. USA 116 22445
[42] Risken H 1996 Fokker-Planck Equation (Berlin: Springer-Heidelberg) pp. 63-95
[43] Tibshirani R 2011 J. R. Stat. Soc. Ser. B Stat. Methodol. 73 273
[44] Zou H and Hastie T 2005 J. R. Stat. Soc. Ser. B Stat. Methodol. 67 301
[45] Mallat S G and Zhang Z 1993 IEEE Trans. Signal Process. 41 3397
[46] Hastie T, Tibshirani R and Friedman J H 2001 The elements of statistical learning: data mining, inference, and prediction (New York: Springer) p. 214
[47] Guo S L, Yang Y G and Sun Y H 2021 Chaos, Solitons and Fractals 151 111231
[48] Zhang Y, Duan J, Jin Y and Li Y 2021 Nonlinear Dyn. 106 2829
[49] Pavliotis G A and Stuart A M 2007 J. Stat. Phys. 127 741
[50] Samson A and Thieullen M 2012 Stoch. Process. their Appl. 122 2521
[51] Lu F, Lin K and Chorin A 2016 Comm. App. Math Comp. Sci. 11 187
[52] Wang Z Q, Xu Y and Yang H 2016 Sci. China Technol. Sci. 59 371
[1] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[2] Line positions, intensities, and Einstein A coefficients for 3-0 band of 12C16O: A spectroscopy learning method
Zhi-Xiang Fan(范志祥), Zhi-Zhang Ni(倪志樟), Jie-Jie He(贺洁洁), Yi-Fan Wang(王一凡), Qun-Chao Fan(樊群超), Jia Fu(付佳), Yong-Gen Xu(徐勇根), Hui-Dong Li(李会东), Jie Ma(马杰), and Feng Xie(谢锋). Chin. Phys. B, 2021, 30(12): 123301.
[3] Ratchet transport of overdamped particles in superimposed driven lattices
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果). Chin. Phys. B, 2019, 28(4): 040502.
[4] Coherence resonance and synchronication of Hindmarsh-Rose neurons with noise
Shi Xia (石霞), Lu Qi-Shao (陆启韶). Chin. Phys. B, 2005, 14(6): 1088-1094.
[5] Modulated stochastic multiresonance in single-mode laser system without input periodic signal
Liang Gui-Yun (梁贵云), Cao Li (曹力), Wu Da-Jin (吴大进). Chin. Phys. B, 2003, 12(10): 1105-1108.
No Suggested Reading articles found!