Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050705    DOI: 10.1088/1674-1056/ad34cb
INSTRUMENTATION AND MEASUREMENT Prev   Next  

FPGA and computer-vision-based atom tracking technology for scanning probe microscopy

Feng-Du Yu(俞风度)1,2, Li Liu(刘利)1, Su-Ke Wang(王肃珂)1, Xin-Biao Zhang(张新彪)3, Le Lei(雷乐)1, Yuan-Zhi Huang(黄远志)1,2, Rui-Song Ma(马瑞松)1, and Qing Huan(郇庆)1,4,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 ACME (Beijing) Technology Co., Ltd., Beijing 101407, China;
4 Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Atom tracking technology enhanced with innovative algorithms has been implemented in this study, utilizing a comprehensive suite of controllers and software independently developed domestically. Leveraging an on-board field-programmable gate array (FPGA) with a core frequency of 100 MHz, our system facilitates reading and writing operations across 16 channels, performing discrete incremental proportional-integral-derivative (PID) calculations within 3.4 microseconds. Building upon this foundation, gradient and extremum algorithms are further integrated, incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm. This integration enhances the real-time performance and significantly increases the accuracy of atom tracking. Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite (HOPG) surface under room temperature atmospheric conditions. Through applying computer vision and image processing algorithms, atom tracking can be used when scanning a large area. The techniques primarily consist of two algorithms: the region of interest (ROI)-based feature matching algorithm, which achieves 97.92% accuracy, and the feature description-based matching algorithm, with an impressive 99.99% accuracy. Both implementation approaches have been tested for scanner drift measurements, and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.
Keywords:  atom tracking      FPGA      computer vision      drift measurement  
Received:  27 February 2024      Revised:  13 March 2024      Accepted manuscript online:  18 March 2024
PACS:  07.79.Cz (Scanning tunneling microscopes)  
  07.79.-v (Scanning probe microscopes and components)  
  07.05.Pj (Image processing)  
  42.30.Tz (Computer vision; robotic vision)  
Fund: Project supported by the National Science Fund for Distinguished Young Scholars (Grant No. T2125014), the Special Fund for Research on National Major Research Instruments of the National Natural Science Foundation of China (Grant No. 11927808), and the CAS Key Technology Research and Development Team Project (Grant No. GJJSTD20200005).
Corresponding Authors:  Qing Huan     E-mail:  huanq@iphy.ac.cn

Cite this article: 

Feng-Du Yu(俞风度), Li Liu(刘利), Su-Ke Wang(王肃珂), Xin-Biao Zhang(张新彪), Le Lei(雷乐), Yuan-Zhi Huang(黄远志), Rui-Song Ma(马瑞松), and Qing Huan(郇庆) FPGA and computer-vision-based atom tracking technology for scanning probe microscopy 2024 Chin. Phys. B 33 050705

[1] Swartzentruber B S 1996 Phys. Rev. Lett. 76 459
[2] Borovsky B, Krueger M and Ganz E 1999 Phys. Rev. B 59 1598
[3] Hill E, Freelon B and Ganz E 1999 Phys. Rev. B 60 15896
[4] Qin X, Swartzentruber B S and Lagally M 2000 Phys. Rev. Lett. 85 3660
[5] Sato T, Kitamura S I and Iwatsuki M 2000 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 18 960
[6] Abe M, Sugimoto Y, Custance O and Morita S 2005 Appl. Phys. Lett. 87 173503
[7] Abe M, Sugimoto Y, Namikawa T, Morita K, Oyabu N and Morita S 2007 Appl. Phys. Lett. 90 203103
[8] Guoqiang Y, Anwei L and Xiaotang H 1999 Aviation Precision ManufacturingTechnology 35 35
[9] Pohl D W and Möller R 1988 Rev. Sci. Instrum. 59 840
[10] Dri C, Panighel M, Tiemann D, Patera L L, Troiano G, Fukamori Y, Knoller F, Lechner B A J, Cautero G, Giuressi D, Comelli G, Fraxedas J, Africh C and Esch F 2019 Ultramicroscopy 205 49
[11] Jacky J P, Garbini J L, Ettus M and Sidles J A 2008 Rev. Sci. Instrum. 79 123705
[12] Picone R A R, Davis S, Devine C, Garbini J L and Sidles J A 2017 Rev. Sci. Instrum. 88 045108
[13] Ghosal S, Pradhan S and Salapaka M 2018 Rev. Sci. Instrum. 89 056103
[14] Xie S and Ren J 2019 Mechatronics 57 86
[15] Liao H S, Akhtar I, Werner C, Slipets R, Pereda J, Wang J H, Raun E, Norgaard L O, Dons F E and Hwu E E T 2022 HardwareX 12 e00341
[16] Kocur V, Hegrova V, Patocka M, Neuman J and Herout A 2023 Ultramicroscopy 246 113666
[17] Rahman Laskar M A and Celano U 2023 APL Machine Learning 1 041501
[18] Stirling J, Woolley R A J and Moriarty P 2013 Rev. Sci. Instrum. 84 113701
[19] Sotres J, Boyd H and Gonzalez-Martinez J F 2021 Nanoscale 13 9193
[20] Liu Y, Yang J, Lawrie B J, Kelley K P, Ziatdinov M, Kalinin S V and Ahmadi M 2023 ACS Nano 17 9647
[21] Choudhary K, Garrity K F, Camp C, Kalinin S V, Vasudevan R, Ziatdinov M and Tavazza F 2021 Sci. Data 8 57
[22] Rade J, Zhang J, Sarkar S, Krishnamurthy A, Ren J and Sarkar A 2022 Bioengineering (Basel) 9 522
[23] Diao Z, Hou L and Abe M 2023 Appl. Phys. Express 16 085002
[24] Diao Z, Ueda K, Hou L, Yamashita H, Custance O and Abe M 2023 Appl. Phys. Lett. 122 121601
[25] Dickbreder T, Sabath F, Holtkemeier L, Bechstein R and Kuhnle A 2023 Beilstein J. Nanotechnol. 14 1225
[26] Teo Y R, Yong Y K and Fleming A J 2016 American Control Conference (ACC) Boston Marriott Copley Place, July 6-8, 2016, pp. 7377- 7383
[27] Gura L, Yang Z, Brinker M, Kalaß F, Kirstaedter W, Marschalik P, Junkes H, Heyde M and Freund H J 2021 Appl. Phys. Lett. 119 251601
[28] Yang Z, Gura L, Kalass F, Marschalik P, Brinker M, Kirstaedter W, Hartmann J, Thielsch G, Junkes H, Heyde M and Freund H J 2022 Rev. Sci. Instrum. 93 053704
[29] Teo Y R, Yong Y and Fleming A J 2016 Asian Journal of Control 20 1352
[30] Marinello F, Balcon M, Schiavuta P, Carmignato S and Savio E 2011 Measurement Science and Technology 22 094016
[31] Esch F, Dri C, Spessot A, Africh C, Cautero G, Giuressi D, Sergo R, Tommasini R and Comelli G 2011 Rev. Sci. Instrum. 82 053702
[32] Nartova A V, Mashukov M Y, Astakhov R R, Kudinov V Y, Matveev A V and Okunev A G 2022 Catalysts 12 135
[33] Kalinin S V, Mukherjee D, Roccapriore K, Blaiszik B J, Ghosh A, Ziatdinov M A, Al-Najjar A, Doty C, Akers S, Rao N S, Agar J C and Spurgeon S R 2023 npj Computational Materials 9 227
[34] Khan A, Lee C H, Huang P Y and Clark B K 2023 npj Computational Materials 9 85
[1] FPGA based hardware platform for trapped-ion-based multi-level quantum systems
Ming-Dong Zhu(朱明东), Lin Yan(闫林), Xi Qin(秦熙),Wen-Zhe Zhang(张闻哲), Yiheng Lin(林毅恒), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(9): 090702.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[4] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[5] Generating multi-layer nested chaotic attractor and its FPGA implementation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), Mengjiao Wang(王梦蛟), and Zhijun Li(李志军). Chin. Phys. B, 2021, 30(6): 060509.
[6] Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation
Qing-Yu Shi(石擎宇), Xia Huang(黄霞), Fang Yuan(袁方), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(2): 020507.
[7] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[8] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[9] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[10] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[11] Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor
En-Zeng Dong(董恩增), Zhen Wang(王震), Xiao Yu(于晓), Zeng-Qiang Chen(陈增强), Zeng-Hui Wang(王增会). Chin. Phys. B, 2018, 27(1): 010503.
[12] Study on a new chaotic bitwise dynamical system and its FPGA implementation
Wang Qian-Xue (王倩雪), Yu Si-Min (禹思敏), C. Guyeux, J. Bahi, Fang Xiao-Le (方晓乐). Chin. Phys. B, 2015, 24(6): 060503.
[13] Design and FPGA Implementation of a new hyperchaotic system
Wang Guang-Yi(王光义), Bao Xu-Lei(包旭雷), and Wang Zhong-Lin(王忠林). Chin. Phys. B, 2008, 17(10): 3596-3602.
No Suggested Reading articles found!