Abstract Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil--water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil--water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil--water flow patterns. To investigate the dynamic characteristics of the inclined oil--water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil--water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil--water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice.
Received: 30 March 2009
Revised: 11 May 2009
Accepted manuscript online:
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos 50674070 and
60374041), and the National High Technology Research and Development
Program of China (Grant No 2007AA06Z231).
Cite this article:
Gao Zhong-Ke(高忠科) and Jin Ning-De(金宁德) Complex network analysis in inclined oil--water two-phase flow 2009 Chin. Phys. B 18 5249
Characteristics of vapor based on complex networks in China Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.