Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020314    DOI: 10.1088/1674-1056/23/2/020314
GENERAL Prev   Next  

Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum

Zhong Hong-Hua (钟宏华)a b, Xie Qiong-Tao (谢琼涛)b c, Xu Jun (徐军)b, Hai Wen-Hua (海文华)c, Li Chao-Hong (李朝红)b
a Department of Physics, Jishou University, Jishou 416000, China;
b State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
c Department of Physics and Key Laboratory of Low-Dimensional Quantum Structure and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China
Abstract  We investigate the nonlinear dissipative coherence bifurcation and population dynamics of a two-component atomic Bose–Einstein condensate coupling with a continuum. The coupling between the two-component condensates and the continuum brings effective dissipations to the two-component condensates. The steady states and the coherence bifurcation depend on both dissipation and the nonlinear interaction between condensed atoms. The coherence among condensed atoms may be even enhanced by the effective dissipations. The combination of dissipation and nonlinearity allows one to control the switching between different self-trapped states or the switching between a self-trapped state and a non-self-trapped state.
Keywords:  Bose–Einstein condensate      nonlinear dynamics      quantum tunneling      open quantum system  
Received:  27 April 2013      Revised:  24 June 2013      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Gg (Entanglement and decoherence in Bose-Einstein condensates)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Basic Research and Development Program of China (Grant No. 2012CB821305), the National Natural Science Foundation of China (Grant Nos. 11075223, 11147021, 10905019, and 11175064), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0964), the Natural Science Foundation of Hunan Province, China (Grant No. 12JJ4010), the Program for New Century Excellent Talents in University (Grant No. NCET-10-0850), and the Ph. D. Programs Foundation of the Ministry of Education of China (Grant No. 20120171110022).
Corresponding Authors:  Zhong Hong-Hua     E-mail:  hhzhong115@163.com
About author:  03.75.Kk; 03.75.Gg; 03.75.Lm; 05.30.Jp

Cite this article: 

Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红) Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum 2014 Chin. Phys. B 23 020314

[1] Matthews M R, Hall D S, Jin D S, Ensher J R, Wieman C E, Cornell E A, Dalfovo F, Minniti C and Stringari S 1998 Phys. Rev. Lett. 81 243
[2] Hall D S, Matthews M R, Ensher J R, Wieman C E and Cornell E A 1998 Phys. Rev. Lett. 81 1539
[3] Hall D S, Matthews M R, Wieman C E and Cornell E A 1998 Phys. Rev. Lett. 81 1543
[4] Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2002 Phys. Rev. Lett. 88 070403
[5] Erhard M, Schmaljohann H, Kronjäger J, Bongs K and Sengstock K 2004 Phys. Rev. A 69 032705
[6] Zibold T, Nicklas E, Gross C and Oberthaler M K 2010 Phys. Rev. Lett. 105 204101
[7] Li S C, Fu L B, Duan W S and Liu J 2008 Phys. Rev. A 78 063621
[8] Chien C C and Cooper F 2013 Phys. Rev. A 87 045602
[9] Williams J, Walser R, Cooper J, Cornell E and Holland M 1999 Phys. Rev. A 59 R31
[10] Lee C, Hai W, Luo X, Shi L and Gao K 2003 Phys. Rev. A 68 053614
[11] Öhberg P and Santos L 2001 Phys. Rev. Lett. 86 2918
[12] Kasamatsu K and Tsubota M 2004 Phys. Rev. Lett. 93 100402
[13] Lee C, Hai W, Shi L, Zhu X and Gao K 2001 Phys. Rev. A 64 053604
[14] Yao S F, Li Q Y and Li Z D 2011 Chin. Phys. B 20 110307
[15] Wen L, Liu W M, Cai Y, Zhang J M and Hu J 2012 Phys. Rev. A 85 043602
[16] Li F, Shu W X, Luo H L and Ren Z Z 2007 Chin. Phys. 16 650
[17] Lee C, Hai W, Shi L and Gao K 2004 Phys. Rev. A 69 033611
[18] Cirac J I, Lewenstein M, Molmer K and Zoller P 1998 Phys. Rev. A 57 1208
[19] Saito H, Kawaguchi Y and Ueda M 2007 Phys. Rev. A 76 043613
[20] Saito H, Kawaguchi Y and Ueda M 2009 Phys. Rev. Lett. 102 230403
[21] Li S C and Duan W S 2009 Chin. Phys. B 18 4177
[22] Ostrovskaya E A and Kivshar Y S 2004 Phys. Rev. Lett. 92 180405
[23] Lee C, Huang J, Deng H, Dai H and Xu J 2012 Front. Phys. 7 109
[24] Xie Q and Hai W 2006 Eur. Phys. J. D 39 277
[25] Xie Q and Hai W 2005 Eur. Phys. J. D 33 265
[26] Chen Z D, Liang J Q, Shen S Q and Xie W F 2004 Phys. Rev. A 69 023611
[27] Zhang G F, Yin W, Liang J Q and Yan Q W 2004 Chin. Phys. 13 988
[28] Lee C 2006 Phys. Rev. Lett. 97 150402
[29] Ng H T and Chu S 2012 Phys. Rev. A 85 023636
[30] Ng H T and Chu S 2011 Phys. Rev. A 84 023629
[31] Wu Y and Yang X 2003 Phys. Rev. A 68 013608
[32] Yang X and Wu Y 2009 Commun. Theor. Phys. 52 244
[33] Lee C, Alexander T J and Kivshar Y S 2006 Phys. Rev. Lett. 97 180408
[34] Micheli A, Jaksch D, Cirac J I and Zoller P 2003 Phys. Rev. A 67 013607
[35] Lee C, Fu L B and Kivshar Y S 2008 Europhys. Lett. 81 60006
[36] Kuang L M, Tong Z Y, Ouyang Z W and Zeng H S 1999 Phys. Rev. A 61 013608
[37] Kuang L M and Ouyang Z W 2000 Phys. Rev. A 61 023604
[38] Lee C 2009 Phys. Rev. Lett. 102 070401
[39] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature 443 312
[40] Fedichev P O, Kagan Y, Shlyapnikov G V and Walraven J T M 1996 Phys. Rev. Lett. 77 2913
[41] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature 412 295
[42] Pethick C J and Smith H 2001 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[43] Muruganandam P and Adhikari S K 2002 Phys. Rev. A 65 043608
[44] Saito H and Ueda M 2002 Phys. Rev. A 65 033624
[45] Graefe E M and Korsch H J 2006 Czech. J. Phys. 56 1007
[46] Graefe E M, Höning M and Korsch H J 2010 J. Phys. A: Math. Theor. 43 075306
[47] Kohler S and Sols F 2002 Phys. Rev. Lett. 89 060403
[48] Graefe E M, Günther U, Korsch H J and Niederle A E 2008 J. Phys. A: Math. Theor. 41 255206
[49] Graefe E M, Korsch H J and Niederle A E 2008 Phys. Rev. Lett. 101 150408
[50] Graefe E M, Korsch H J and Niederle A E 2010 Phys. Rev. A 82 013629
[51] Hiller M, Kottos T and Ossipov A 2006 Phys. Rev. A 73 063625
[52] Zhong H, Hai W, Lu G and Li Z 2011 Phys. Rev. A 84 013410
[53] Shchesnovich V S and Konotop V V 2010 Phys. Rev. A 81 053611
[54] Witthaut D, Trimborn F and Wimberger S 2008 Phys. Rev. Lett. 101 200402
[55] Witthaut D, Trimborn F and Wimberger S 2009 Phys. Rev. A 79 033621
[56] Hao Y and Gu Q 2011 Phys. Rev. A 83 043620
[57] Devdariani A Z, Ostrovskii V N and Sebyakin Y N 1976 Sov. Phys. JETP 44 477
[58] Makhmetov G E, Borisov A G, Teillet-Billy D and Gauyacq J P 1994 Europhys. Lett. 27 247
[59] Fano U 1961 Phys. Rev. 124 1866
[60] Anglin J 1997 Phys. Rev. Lett. 79 6
[61] Cui B, Wang L C and Yi X X 2012 Phys. Rev. A 85 013618
[62] Li P, Li R and Li L 2012 Rom. Rep. Phys. 64 1271
[63] Luo X, Huang J, Zhong H, Qin X, Xie Q, Kivshar Y S and Lee C 2013 Phys. Rev. Lett. 110 243902
[64] Chen C, Hu H, Lei L and Zeng X 2012 Math. Numer. Sin. 34 3
[65] Xie Q 2007 Phys. Rev. A 76 043622
[66] Anglin J R and Vardi A 2001 Phys. Rev. A 64 013605
[67] Bloch I, Hänsch T W and Esslinger T 1999 Phys. Rev. Lett. 82 3008
[68] Matthias E, Zoller P, Elliott D S, Piltch N D, Smith S J and Leuchs G 1983 Phys. Rev. Lett. 50 1914
[69] Heidemann R, Raitzsch U, Bendkowsky V, Butscher B, Löw R and Pfau T 2008 Phys. Rev. Lett. 100 033601
[1] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[2] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[3] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[4] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[5] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[6] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[7] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[8] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[9] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[10] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[11] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[12] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[13] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[14] Concrete quantum tunneling spectrum of Schwarzschild black holes
Chen Si-Na (陈斯纳), Zhang Jing-Yi (张靖仪). Chin. Phys. B, 2015, 24(2): 020401.
[15] A new manganese-based single-molecule magnet with a record-high antiferromagnetic phase transition temperature
Cui Yan (崔岩), Li Yan-Rong (李艳荣), Li Rui-Yuan (李瑞元), Wang Yun-Ping (王云平). Chin. Phys. B, 2014, 23(6): 067504.
No Suggested Reading articles found!