Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088401    DOI: 10.1088/1674-1056/ab8da1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit

Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源)
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical structure, especially investigate its output performance in vibration harvesting and ability to generate charges. By establishing the theoretical model for each of vibration and circuit, the numerical results of voltage and power output are obtained. By fabricating the prototype of this harvester, the quality of the sputtered film is explored. Theoretical and experimental analyses are conducted in open-circuit and closed-circuit conditions, where the open-circuit mode refers to the voltage output in relation to the ZnO film and external excitation, and the power output of the closed-circuit mode is relevant to resistance. Experimental findings show good agreement with the theoretical ones, in the output tendency. It is observed that the properties of ZnO film achieve regularly direct proportion to output performance under different excitations. Furthermore, a maximum experimental power output of 4.5 mW in a resistance range of 3 kΩ-8 kΩ is achieved by using an improved synchronous electric charge extraction circuit. The result is not only more than three times the power output of classic circuit, but also can broaden the resistance to a large range of 5 kΩ under an identical maximum value of power output. In this study we demonstrate the fundamental mechanism of piezoelectric materials under multiple conditions and take an example to show the methods of fabricating and testing the ZnO film. Furthermore, it may contribute to a novel energy harvesting circuit with high output performance.
Keywords:  piezoelectric vibration energy harvester      beam-type structure      ZnO film      improved synchronous electric charge extraction circuit  
Received:  12 February 2020      Revised:  18 April 2020      Accepted manuscript online: 
PACS:  84.90.+a (Other topics in electronics, radiowave and microwave technology, and direct energy conversion and storage)  
  34.50.Ez (Rotational and vibrational energy transfer)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  29.27.-a (Beams in particle accelerators)  
Corresponding Authors:  Hong-Rui Ao     E-mail:  hongrui_ao@hit.edu.cn

Cite this article: 

Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源) Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit 2020 Chin. Phys. B 29 088401

[1] Wang P, Du H and Shen S 2012 Appl. Surf. Sci. 258 9510
[2] Li X, Upadrashta D, Yu K and Yang Y 2018 Energ. Convers. Manag. 176 69
[3] Fan K Q, Xu C H, Wang W D and Fang Y 2014 Chin. Phys. B 23 084501
[4] Erturk A and Inman D J 2008 Smart Mater. Struct. 17 065016
[5] Yang Z, Wang Y Q, Zuo L and Zu J 2017 Energ. Convers. Manag. 148 260
[6] Fan K Q, Ming Z F, Xu C H and Chao F B 2013 Chin. Phys. B 22 104502
[7] Zhang L, Lu J, Takei R, Makimoto N, Itoh T and Kobayashi T 2016 Rev. Sci. Instrum. 87 085005
[8] Chen R, Ren L, Xia H, Yuan X and Liu X 2015 Sens. Actuat. A-Phys. 230 1
[9] Kim H W, Batra A, Priya S, Uchino K, Markley D, Newnham R E and Hofmann H F 2004 Jpn. J. Appl. Phys. 43 6178
[10] Kuehne I, Marinkovic D, Eckstein G and Seidel H 2008 Sens. Actuat. A-Phys. 142 292
[11] Bai Y, Tofel P, Hadas Z, Smilek J, Losak P, Skarvada P and Macku R 2018 Mech. Syst. Signal Pr. 106 303
[12] Erturk A and Inman D J 2008 J. Intel. Mat. Syst. Str. 19 1311
[13] Erturk A, Sodano H A, Renno J M and Inman D J 2009 J. Intel. Mat. Syst. Str. 20 529
[14] Zhao S and Erturk A 2013 Smart Mater. Struct. 22 015002
[15] Izadgoshasb I, Lim Y Y, Lake N, Tang L, Padilla R V and Kashiwao T 2018 Energ. Convers. Manag. 161 66
[16] Lee C S, Joo J, Han S and Koh S K 2004 Appl. Phys. Lett. 85 1841
[17] Li H, Tian C and Deng Z D 2014 Appl. Phys. Rev. 1 041301
[18] Bhavanasi V, Kumar V, Parida K, Wang J and Lee P S 2016 Acs Appl. Mater. Inter. 8 521
[19] Kanno I, Ichida T, Adachi K, Kotera H, Shibata K and Mishima T 2012 Sens. Actuat. A-Phys. 179 132
[20] Wang Y, Zhang X, Guo X, Li D, Cui B, Wu K, Yun J, Mao J, Xi L and Zuo Y 2018 J. Mater. Sci. 53 13081
[21] Shen D, Park J H, Ajitsaria J, Choe S Y, Wikle H C and Kim D J 2008 J. Micromech. Microeng. 18 055017
[22] Platt S R, Farritor S and Haider H 2005 IEEE-ASME T. Mech. 10 240
[23] Zhang Z, Kang Z, Liao Q L, Zhang X M and Zhang Y 2017 Chin. Phys. B 26 118102
[24] Yuan Y, Du H, Wang P, Chow K S, Zhang M, Yu S and Liu B 2013 Sens. Actuat. A-Phys. 194 75
[25] Wang P, Du H, Shen S, et al. 2012 Nanoscale Res. Lett. 7 176
[26] Li B S, Xiao Z Y, Ma J G and Liu Y C 2017 Chin. Phys. B 26 117101
[27] Li J and Wang X 2017 APL Mater. 5 073801
[28] Yang Z and Zu J 2016 Energ. Convers. Manag. 122 321
[29] Wu J, Shi H, Zhao T, Yu Y and Dong S 2016 Adv. Funct. Mater. 26 7186
[30] Kumar C N 2015 J. Phys.:Conf. Ser. 662 012031
[31] Kwon S C, Onoda J and Oh H U 2019 Mech. Syst. Signal Pr. 117 361
[32] Pan J M, Qin W Y, Deng W Z and Zhou H L 2019 Chin. Phys. B 28 017701
[33] Wang X, Shi Z, Wang J and Xiang H 2016 Smart Mater. Struct. 25 055005
[34] Yang Z, Zhu Y and Zu J 2015 Smart Mater. Struct. 24 025028
[35] Akaydin H D, Elvin N and Andreopoulos Y 2012 Smart Mater. Struct. 21 025007
[36] Lefeuvre E, Badel A, Richard C, Petit L and Guyomar D 2006 Sens. Actuat. A-Phys. 126 405
[37] Wu Y, Badel A, Formosa F, Liu W and Agbossou 2014 J. Intel. Mat. Syst. Str. 25 2165
[38] Wu Y, Badel A, Formosa F, Liu W and Agbossou 2019 IEEE T. Power Electr. 34 275
[39] Roundy S and Tola J 2014 Smart Mater. Struct. 23 105004
[40] Khan A, Abas Z, Soo Kim H and Oh I K 2016 Smart Mater. Struct. 25 053002
[41] Xia H, Xia Y, Ye Y, Qian L, Shi G and Chen R 2018 IEEE Sens. J. 18 6235
[42] Arroyo E and Badel A 2011 Sens. Actuat. A-Phys. 171 266
[43] Lefeuvre E, Badel A, Richard C and Guyomar D 2005 J. Intel. Mat. Syst. Str. 16 865
[44] Williams C B and Yates R B 1996 Sens. Actuat. A-Phys. 52 8
[45] Geffrey K O, Heath F H and George A L 2003 IEEE T. Power Electr. 8 696
[46] Abdelmoula H, Dai H L, Abdelkefi A and Wang L 2017 Smart Mater. Struct. 26 095013
[47] Yildirim T, Ghayesh M H, Searle T, Li W and Alici G 2017 J. Energ. Resour.-ASME 139 032001
[1] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[2] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[3] Cubic ZnO films obtained at low pressure by molecular beam epitaxy
Wang Xiao-Dan (王小丹), Zhou Hua (周华), Wang Hui-Qiong (王惠琼), Ren Fei (任飞), Chen Xiao-Hang (陈晓航), Zhan Hua-Han (詹华瀚), Zhou Ying-Hui (周颖慧), Kang Jun-Yong (康俊勇). Chin. Phys. B, 2015, 24(9): 097106.
[4] Microstructure and optical properties of nitrogen-doped ZnO film
Zhao Xian-Wei (赵显伟), Gao Xiao-Yong (郜小勇), Chen Xian-Mei (陈先梅), Chen Chao (陈超), Zhao Meng-Ke (赵孟珂 ). Chin. Phys. B, 2013, 22(2): 024202.
[5] Nanoscaled ZnO films used as enhanced substrates for fluorescence detection of dyes
Liu Yan-Song(刘艳松), Yi Fu, Ramachandram Badugu, Joseph R. Lakowicz, and Xu Xiao-Liang(许小亮) . Chin. Phys. B, 2012, 21(3): 037803.
[6] Zn/O ratio and oxygen chemical state of nanocrystalline ZnO films grown at different temperatures
Fan Hai-Bo(范海波), Zheng Xin-Liang(郑新亮), Wu Si-Cheng(吴思诚), Liu Zhi-Gang(刘志刚), and Yao He-Bao(姚合宝) . Chin. Phys. B, 2012, 21(3): 038101.
[7] PEDOT:PSS Schottky contacts on annealed ZnO films
Zhu Ya-Bin(朱亚彬), Hu Wei(胡伟), Na Jie(纳杰), He Fan(何帆), Zhou Yue-Liang(周岳亮), and Chen Cong(陈聪) . Chin. Phys. B, 2011, 20(4): 047301.
[8] Ferromagnetism in Eu-doped ZnO films deposited by radio-frequency magnetic sputtering
Tan Yong-Sheng(谭永胜), Fang Ze-Bo(方泽波), Chen Wei(陈伟), and He Pi-Mo(何丕模). Chin. Phys. B, 2010, 19(9): 097502.
[9] Preparation of transparent conductive ZnO:Tb films and their photoluminescence properties
Fang Ze-Bo (方泽波), Tan Yong-Sheng (谭永胜), Liu Xue-Qin (刘雪芹), Yang Ying-Hu (杨映虎), Wang Yin-Yue (王印月). Chin. Phys. B, 2004, 13(8): 1330-1333.
[10] Ultraviolet emission of ZnO film prepared by electrophoretic deposition
Wang Zhi-Jun (王志军), Wang Zhi-Jian (王之建), Li Shou-Chun (李守春), Wang Ze-Heng (王泽恒), Lü You-Ming (吕有明), Yuan Jin-Shan (元金山). Chin. Phys. B, 2004, 13(5): 750-753.
No Suggested Reading articles found!