Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(12): 4516-4522    DOI: 10.1088/1674-1056/17/12/031
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Control of period-one oscillation for all-optical clock division and clock recovery by optical pulse injection driven semiconductor laser

Li Jing-Xia (李静霞), Zhang Ming-Jiang (张明江), Niu Sheng-Xiao (牛生晓), Wang Yun-Cai (王云才)
Department of Physics, College of Science, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the external injection optical pulses to lock the different harmonic frequencies of the period-one state, the clock recovery and the frequency division (the second and third frequency divisions) are achieved experimentally. In addition, in frequency locking ranges of 2GHz and 1.9GHz, the second and third frequency divisions are obtained with the phase noise lower than --100dBc/Hz, respectively. Our experimental results are consistent well with the numerical simulations.
Keywords:  clock division      clock recovery      optical pulses injection      nonlinear dynamics  
Received:  09 March 2008      Revised:  19 June 2008      Accepted manuscript online: 
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  07.07.Tw (Servo and control equipment; robots)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60577019).

Cite this article: 

Li Jing-Xia (李静霞), Zhang Ming-Jiang (张明江), Niu Sheng-Xiao (牛生晓), Wang Yun-Cai (王云才) Control of period-one oscillation for all-optical clock division and clock recovery by optical pulse injection driven semiconductor laser 2008 Chin. Phys. B 17 4516

[1] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[2] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[3] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[4] The propagation of shape changing soliton in a nonuniform nonlocal media
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi. Chin. Phys. B, 2013, 22(8): 084209.
[5] Propagation of electromagnetic soliton in anisotropic biquadratic ferromagnetic medium
L. Kavitha, M. Saravanan, D. Gopi. Chin. Phys. B, 2013, 22(3): 030512.
[6] Nonlinear dynamics in wurtzite InN diodes under terahertz radiation
Feng Wei(冯伟) . Chin. Phys. B, 2012, 21(3): 037306.
[7] Directed segregation in compartmentalized bi-disperse granular gas
Sajjad Hussain Shah, Li Yin-Chang(李寅阊), Cui Fei-Fei(崔非非), Zhang Qi(张祺), and Hou Mei-Ying(厚美瑛) . Chin. Phys. B, 2012, 21(1): 014501.
[8] Complex network analysis in inclined oil--water two-phase flow
Gao Zhong-Ke(高忠科) and Jin Ning-De(金宁德) . Chin. Phys. B, 2009, 18(12): 5249-5258.
[9] Synchronization transition of limit-cycle system with homogeneous phase shifts
Zhang Ting-Xian(张廷宪) and Zheng Zhi-Gang(郑志刚). Chin. Phys. B, 2009, 18(10): 4187-4192.
No Suggested Reading articles found!