Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030512    DOI: 10.1088/1674-1056/22/3/030512
GENERAL Prev   Next  

Propagation of electromagnetic soliton in anisotropic biquadratic ferromagnetic medium

L. Kavithaa b c, M. Saravanana, D. Gopic d
a Department of Physics, Periyar University, Salem-636 011, Tamilnadu, India;
b The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
c Center for Nanoscience and Nanotechnology, Periyar University, Salem-636 011, Tamilnadu, India;
d Department of Chemistry, Periyar University, Salem-636 011, Tamilnadu, India
Abstract  The information storage technology based on anisotropic ferromagnets with sufficiently high magneto-optical effects has received much attention in recent years. The magneto-optical recording combines the merits of magnetic and optical techniques. We investigate the magneto-optical effects on a biquadratic ferromagnet and show that the dynamics of the system is governed by a perturbed nonlinear Schrödinger equation. The evolutions of amplitude and velocity of the soliton are found to be time independent, thereby admitting the lossless propagation of electromagnetic soliton in the medium, which may have potential applications in accordance with the soliton based optical communication systems. We also exploit the role of perturbation, which has a significant impact on the propagation of electromagnetic soliton.
Keywords:  solitons      classical spin models      Maxwell equations      nonlinear dynamics  
Received:  28 July 2012      Revised:  26 September 2012      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  75.10.Hk (Classical spin models)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by UGC, NBHM, India in the form of major research projects, DAE-BRNS, India in the form of Young Scientist Research Award, ICTP, Italy in the form of Junior Associateship, and CSIR, India in the form of Senior Research Fellowship.
Corresponding Authors:  L. Kavitha     E-mail:  louiskavitha@yahoo.co.in

Cite this article: 

L. Kavitha, M. Saravanan, D. Gopi Propagation of electromagnetic soliton in anisotropic biquadratic ferromagnetic medium 2013 Chin. Phys. B 22 030512

[1] Wöllert A and Honecker A 2012 Phys. Rev. B 85 184433
[2] Fialko O, Brand J and Zlicke U 2012 Phys. Rev. A 85 051605
[3] Besley J A, Miller P D and Akhmediev N N 2000 Phys. Rev. E 61 7121
[4] Kavitha L, Jayanthi S, Muniyappan A and Gopi D 2011 Phys. Scr. 84 035803
[5] Kavitha L, Sathishkumar P and Gopi D 2009 Phys. Scr. 79 015402
[6] Liu W M, Zhang W S, Pu F C and Zhou X 1999 Phys. Rev. B 60 12893
[7] Agrawal G P 2001 Applications of Nonlinear Fiber Optics (San Diego: Academic Press)
[8] Hasewaga A and Tappert F D 1973 Appl. Phys. Lett. 23 142
[9] Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Scr. 45 1095
[10] Matsubara M, Schmehl A, Mannhart J, Schlom D G and Fiebig M 2010 Phys. Rev. B 81 214447
[11] Ogawa N, Satoh T, Ogimoto Y and Miyano K 2009 Phys. Rev. B 80 241104
[12] Demidov V E, Demokritov S O, Rott K, Krzysteczko P and Reiss G 2008 Phys. Rev. B 77 064406
[13] Logoboy N A and Sonin E B 2007 Phys. Rev. B 75 153206
[14] Chien C L, Gornakov V S, Nikitenko V I, Shapiro A J and Shull R D 2003 Phys. Rev. B 68 014418
[15] Liu W M, Wu B, Zhou X, Campbell D K, Chui S T and Niu Q 2002 Phys. Rev. B 65 172416
[16] Zhang J G, Wen S C, Xiang Y J, Wang Y W and Luo H L 2010 Phys. Rev. A 81 023829
[17] Leblond H and Manna M 2009 Phys. Rev. B 80 064424
[18] Zabolotskii A A 2012 Phys. Rev. A 85 063833
[19] Hoefer M A, Sommacal M and Silva T J 2012 Phys. Rev. B 85 214433
[20] Daniel M and Kavitha L 2001 Phys. Rev. B 63 172302
[21] Daniel M, Kavitha L and Amuda R 1999 Phys. Rev. B 59 13774
[22] Kavitha L, Sathishkumar P and Gopi D 2010 J. Phys. A: Math. Theor. 43 125201
[23] Kavitha L and Daniel M 2003 J. Phys. A: Math. Gen. 36 10471
[24] Kavitha L, Sathishkumar P, Saravanan M and Gopi D 2011 Phys. Scr. 83 055701
[25] Leblond H 2001 J. Phys. A: Math. Gen. 34 9687
[26] Kavitha L, Saravanan M, Akila N, Bhuvaneswari S and Gopi D 2012 Phys. Scr. 85 035007
[27] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[28] Kraenkel R A, Manna M A and Merle V 2000 Phys. Rev. E 61 976
[29] Leblond H, Triki T and Mihalache D 2012 Phys. Rev. A 85 053826
[30] Leblond H and Manna M 1993 J. Phys. A: Math. Gen. 26 6451
[31] Chen M, Tsankov M A, Nash J M and Patton C E 1993 Phys. Scr. 70 1707
[32] McCall S L and Hahn E L 1967 Phys. Scr. 18 908
[33] Daniel M and Veerakumar V 2002 Phys. Lett. A 302 77
[34] Kavitha L, Saravanan M, Srividya B and Gopi D 2011 Phys. Rev. E 84 066608
[35] Jackson J D 1993 Classical Electrodynamics (New York: Wiley Eastern)
[36] Taniuti T and Yajima N 1969 J. Math. Phys. 10 1369
[37] Leblond H and Manna M 1994 Phys. Rev. E 50 2275
[38] Kavitha L, Srividya B and Gopi D 2010 J. Magn. Magn. Mater. 322 1793
[39] Kavitha L, Srividya B, Akila N and Gopi D 2010 Nonl. Sci. Lett. A 1 95
[40] Zakharov V E and Shabat A B 1972 Sov. Phys. JETP 34 62
[41] Akhmediev N N and Ankiewicz A 1997 Solitons, Nonlinear Pulses and Beams (London: Chapman and Hall)
[42] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
[43] Kodama Y and Ablowitz M J 1981 Stud. Appl. Math. 64 225
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[3] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[4] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[9] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[10] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[11] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[12] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[13] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[14] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[15] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
No Suggested Reading articles found!