Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044204    DOI: 10.1088/1674-1056/ad1a8b
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Plasmon-induced nonlinear response on gold nanoclusters

Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙)
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
Abstract  The plasmon-induced nonlinear response has attracted great attention in micro-nano optics and optoelectronics applications, yet the underlying microscopic mechanism remains elusive. In this study, the nonlinear response of gold nanoclusters when exposed to a femtosecond laser pulse was investigated using time-dependent density functional theory. It was observed that the third-order tunneling current was augmented in plasmonic dimers, owing to a greater number of electrons in the dimer being excited from occupied to unoccupied states. These findings provide profound theoretical insights and enable the realization of accurate regulation and control of nonlinear effects induced by plasmons at the atomic level.
Keywords:  plasmon      nonlinear optics      time-dependent density functional theory (TDDFT)  
Received:  11 October 2023      Revised:  29 December 2023      Accepted manuscript online:  04 January 2024
PACS:  42.65.-k (Nonlinear optics)  
  31.15.ee (Time-dependent density functional theory)  
  36.40.Vz (Optical properties of clusters)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2020YFA0211300 and 2021YFA1201500), the National Natural Science Foundation of China (Grant Nos. U22A6005, 92150110, 12074237, and 12304426), the Natural Science Foundation of Shaanxi Province (Grant No. 2024JC-JCQN-07), the Fundamental Science Foundation of Shaanxi (Grant No. 22JSZ010), and the Fundamental Research Funds for Central Universities (Grant Nos. GK202201012 and GK202308001).
Corresponding Authors:  Lei Yan, Zhenglong Zhang     E-mail:  yanlei@snnu.edu.cn;zlzhang@snnu.edu.cn

Cite this article: 

Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙) Plasmon-induced nonlinear response on gold nanoclusters 2024 Chin. Phys. B 33 044204

[1] Xiao S, Qin M, Duan J, Wu F and Liu T 2022 Phys. Rev. B 105 195440
[2] Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugzlys A, Baltuska A and Tzortzakis S 2020 Nat. Commun. 11 292
[3] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H and Notomi M 2019 Nat. Photon. 14 37
[4] Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X and Ozaki T 2016 J. Opt. 18 093004
[5] Nitiss E, Hu J, Stroganov A and Brés C S 2022 Nat. Photon. 16 134
[6] Provazza J, Tempelaar R and Coker D F 2021 J. Chem. Phys. 155 014108
[7] Dai Y, Wang Y, Das S, Xue H, Bai X, Hulkko E, Zhang G, Yang X, Dai Q and Sun Z 2020 ACS Nano 14 8442
[8] Li G C, Lei D Y, Qiu M, Jin W, Lan S and Zayats A V 2021 Nat. Commun. 12 4326
[9] Li Y, Song Y, Zhang X, Liu T, Xu T, Wang H, Jiang D E and Jin R 2022 J. Am. Chem. Soc. 144 12381
[10] Lien M B, Kim J Y, Han M G, Chang Y C, Chang Y C, Ferguson H J, Zhu Y, Herzing A A, Schotland J C, Kotov N A and Norris T B 2017 ACS Nano 11 5925
[11] Singh D J, Krakauer H, Haas C and Liu A Y 1992 Phys. Rev. B 46 13065
[12] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737
[13] Frischwasser K, Cohen K, Tsesses S, Dolev S, Rosenblatt G and Bartal G 2022 Phys. Rev. Lett. 128 103901
[14] Marinica D C, Kazansky A K, Nordlander P, Aizpurua J and Borisov A G 2012 Nano Lett. 12 1333
[15] Bonafé F P, Aradi B, Guan M, Douglas-Gallardo O A, Lian C, Meng S, Frauenheim T and S'anchez C G 2017 Nanoscale 9 12391
[16] Choi Y M, Roh S H, Kwak E, Choi D-G, Kwon S J, Kim J K and Park J H 2023 Chem. Eng. J. 461 142082
[17] Frontiera R R, Henry A I, Gruenke N L and Van Duyne R P 2011 J. Phys. Chem. Lett. 2 1199
[18] Lin X R, You L X, He Q L, Zhuang W, Huang B Z and Zheng D X 2023 Electroanalysis 35 e202300001
[19] Gao S 2015 J. Chem. Phys. 142 234701
[20] Ponkratova E, Ageev E, Komissarenko F, Koromyslov S, Kudryashov D, Mukhin I, Veiko V, Kuchmizhak A and Zuev D 2021 Photonics 8 121
[21] Chen Q, Chen W, Miao B and Fan J 2022 J. Am. Ceram. Soc. 105 4784
[22] Zhang Y, Grady N K, Ayala-Orozco C and Halas N J 2011 Nano Lett. 11 5519
[23] Hanke T, Cesar J, Knittel V, Trugler A, Hohenester U, Leitenstorfer A and Bratschitsch R 2012 Nano Lett. 12 992
[24] Goulielmakis E and Brabec T 2022 Nat. Photon. 16 411
[25] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Phys. Stat. Sol. (b) 243 2465
[26] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[27] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[28] Sorensen C M and Fischbach D J 2000 Opt. Commun. 173 145
[29] Yan L, Guan M and Meng S 2018 Nanoscale 10 8600
[30] Li C, Lu X, Srivastava A, Storm S D, Gelfand R, Pelton M, Sukharev M and Harutyunyan H 2021 Nano Lett. 21 1599
[31] Ma J, Wang Z and Wang L W 2015 Nat. Commun. 6 10107
[32] Townsend E and Bryant G W 2014 J. Opt. 16 114022
[33] Guan M, Yan L, Hu S, Zhang Y, Chen D and Meng S 2023 Phys. Rev. B 107 075426
[1] A historical overview of nano-optics: From near-field optics to plasmonics
Miao-Yi Deng(邓妙怡), and Xing Zhu(朱星). Chin. Phys. B, 2024, 33(5): 050703.
[2] Tunable artificial plasmonic nanolaser with wide spectrum emission operating at room temperature
Peng Zhou(周鹏), Jia-Qi Guo(郭佳琦), Kun Liang(梁琨), Lei Jin(金磊), Xiong-Yu Liang(梁熊玉), Jun-Qiang Li(李俊强), Xu-Yan Deng(邓绪彦), Jian-Yu Qin(秦建宇), Jia-Sen Zhang(张家森), and Li Yu(于丽). Chin. Phys. B, 2024, 33(5): 054210.
[3] Near-field radiative heat transfer between nanoporous GaN films
Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文). Chin. Phys. B, 2024, 33(4): 047801.
[4] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[5] Valley filtering and valley-polarized collective modes in bulk graphene monolayers
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰). Chin. Phys. B, 2024, 33(1): 017203.
[6] Using harmonic beam combining to generate pulse-burst in nonlinear optical laser
Yuan-Zhai Xu(许元斋), Zhen-Ling Li(李珍玲), Ao-Nan Zhang(张奥楠), Ke Liu(刘可), Jing-Jing Zhang(张晶晶), Xiao-Jun Wang(王小军), Qin-Jun Peng(彭钦军), and Zu-Yan Xu(许祖彦). Chin. Phys. B, 2024, 33(1): 014206.
[7] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[8] Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals
Qiwen Zheng(郑棋文), Wenguang Lu(卢文广), Jiaqing Xu(胥加青),Yunyang Ye(叶云洋), Xinmin Zhao(赵新民), and Leyong Jiang(蒋乐勇). Chin. Phys. B, 2023, 32(7): 074208.
[9] Angle robust transmitted plasmonic colors with different surroundings utilizing localized surface plasmon resonance
Xufeng Gao(高旭峰), Qi Wang(王琦), Shijie Zhang(张世杰), Ruijin Hong(洪瑞金), and Dawei Zhang(张大伟). Chin. Phys. B, 2023, 32(7): 070204.
[10] Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer
Guo-Dong Yan(严国栋), Zhen-Hua Zhang(张振华), Heng Guo(郭衡), Jin-Ping Chen(陈金平),Qing-Song Jiang(蒋青松), Qian-Nan Cui(崔乾楠), Zeng-Liang Shi(石增良), and Chun-Xiang Xu(徐春祥). Chin. Phys. B, 2023, 32(6): 067302.
[11] Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建). Chin. Phys. B, 2023, 32(5): 054209.
[12] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[13] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[14] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[15] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
No Suggested Reading articles found!