CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice |
Feng Xu(徐峰)† and Lei Zhang(张磊) |
School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001, China |
|
|
Abstract We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime. The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model, the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory. An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction, while antiferromagnetism accompanies this state. The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase. The A phase is analogous to the pseudogap phase, which shows that electrons go to form pairs but do not cause a supercurrent. We also show the superfluid behavior of the unconventional superconducting state and its critical temperature. It is proven directly that the flat band can effectively raise the critical temperature of superconductivity. It is implementable to simulate and control strongly-correlated electrons' behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures. Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.
|
Received: 03 June 2023
Revised: 07 August 2023
Accepted manuscript online: 01 September 2023
|
PACS:
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.20.Mn
|
(Nonconventional mechanisms)
|
|
74.25.Bt
|
(Thermodynamic properties)
|
|
Fund: Project supported by the Natural Science Basic Research Program of Shaanxi (Program Nos. 2023KJXX-064 and 2021JQ-748), the National Natural Science Foundation of China (Grant Nos. 11804213 and 12174238), and Scientific Research Foundation of Shaanxi University of Technology (Grant No. SLGRCQD2006). |
Corresponding Authors:
Feng Xu
E-mail: xufengxlx@snut.edu.cn
|
Cite this article:
Feng Xu(徐峰) and Lei Zhang(张磊) Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice 2024 Chin. Phys. B 33 037402
|
[1] Foley A, Verret S, Tremblay A M S and Senechal D 2019 Phys. Rev. B 99 184510 [2] Qi Y,Liang L, Sun K and Gu Z C 2020 Phys. Rev. B 102 245140 [3] Gu X Y, Chen C,Leaw J L, et al., 2020 Phys. Rev. B 101 180506(R) [4] Psaltakis G C and Penton E W 1983 J. Phys. C: Solid State Phys. 16 3913 [5] Zhang Y, Demler E and Sachdev S 2002 Phys. Rev. B 66 094501 [6] Vorontsov A B, Vavilov M G and Chubukov A V 2010 Phys. Rev. B 81 174538 [7] Kaczmarczyk J and Spalek J 2011 Phys. Rev. B 84 125140 [8] Lu Y M, Xiang T and Lee D H 2014 Nat. Phys. 10 634 [9] Romer A T, Eremin I, Hirschfeld P J and Andersen B M 2016 Phys. Rev. B 93 174519 [10] Almeida D E, Frenaandes R M and Miranda E 2017 Phys. Rev. B 96 014514 [11] Cao Y, Park J M, Watanabe K and Taniguchi T 2021 Natrure 595 526 [12] Yu W, Higgins J S,Bach P and Greene R L 2007 Phys. Rev. B 76 020503(R) [13] Li Z, Zhou R, Liu Y, et al., 2012 Phys. Rev. B 86 180501(R) [14] Kawasaka S, Mabuchi T, Maeda S, et al., 2015 Phys. Rev. B 92 180508(R) [15] Rosa P F S, Kang J, Luo Y, et al., 2017 Proc. Natl. Acad. Sci. USA 114 5384 [16] Peotta R and Törmä P 2015 Nat. Commun. 6 8944 [17] Julku A, Peotta S, Vanhala T I, Kim D and Törmä P 2016 Phys. Rev. Lett. 117 045303 [18] Tovmasyan M, Peotta S, Törmä P and Huber S D 2016 Phys. Rev. B 94 245149 [19] Tovmasyan M, Peotta S, Liang L, Törmä P and Huber S D 2018 Phys. Rev. B 98 134513 [20] Xu F, Chou P, Chung C H, Lee T K and Mou C Y 2018 Phys. Rev. B 98 205103 [21] Xu F and Zhang L 2019 Chin. Phys. B 28 117403 [22] Xu F, Zhang L and Jiang L Y 2021 Chin. Phys. B 30 067401 [23] Tovmasyan M, Nieuwenburg E P and Huber S D 2013 Phys. Rev. B 88 220510 [24] Takayoshi S,Katsura H, Watanabe N and Aoki H 2013 Phys. Rev. A 88 063613 [25] Mondaini R, Batrouni G G and Gremaud B 2018 Phys. Rev. B 98 155142 [26] Jiang Y F, Jiang H C, Yao H and Kivelson S A 2017 Phys. Rev. B 95 245105 [27] Hou J, Lee T K and Chen Y 2019 Phys. Rev. B 99 094510 [28] Yang K Y, Chen W Q, Rice T M, Sigrist M and Zhang F C 2009 New J. Phys. 11 055053 [29] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi E, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [30] Chebrolu N R, Chittari B L and Jung J 2019 Phys. Rev. B 99 235417 [31] Hu X, Hyart T, Pikulin D I and Rossi E 2019 Phys. Rev. Lett. 123 237002 [32] Roy B and Juricic V 2019 Phys. Rev. B 99 121407(R) [33] Julku A, Peltonen T J, Liang L, Heikkila T T and Torma P 2020 Phys. Rev. B 101 060505(R) [34] Kopnin N B, Heikkila T T and Volovik G E 2011 Phys. Rev. B 83 220503 [35] Heikkila T T, Kopnin N B and Volovik G E 2011 JETP Lett. 94 233 [36] Huber S D and Altman E 2010 Phys. Rev. B 82 184502 [37] Creutz M 1999 Phys. Rev. Lett. 83 2636 [38] Misumi T and Aoki H 2017 Phys. Rev. B 96 155137 [39] Rizzi M, Cataudella V and Fazio R 2006 Phys. Rev. B 73 100502(R) [40] Scalapino D J, White S R and Zhang S C 1992 Phys. Rev. Lett. 68 2830 [41] Scalapino D J, White S R and Zhang S C 1993 Phys. Rev. B 47 7996 [42] Zhong Y, Lu H and Luo H 2016 Eur. Phys. J. B 89 28 [43] Ogata M and Himeda A 2003 J. Phys. Soc. Jpn. 72 374 [44] Tylutki M and Torma P 2018 Phys. Rev. B 98 094513 [45] Mulkerin B C, He L, Dyke P, Vale C, Liu X and Hu H 2017 Phys. Rev. A 96 053608 [46] Matsuda Y and Shimahara H 2007 J. Phys. Soc. Jpn. 76 051005 [47] Chen L H, Wang D, Zhou Y and Wang Q H 2020 Chin. Phys. Lett. 37 017403 [48] Zhang F C, Gros C, Rice T M and Shiba H 1988 Supercond. Sci. Technol. 1 36 [49] Edegger B, Muthukumar V N and Gros C 2007 Advances in Physics 56 927 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|