Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037402    DOI: 10.1088/1674-1056/acf5d2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice

Feng Xu(徐峰) and Lei Zhang(张磊)
School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Abstract  We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime. The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model, the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory. An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction, while antiferromagnetism accompanies this state. The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase. The A phase is analogous to the pseudogap phase, which shows that electrons go to form pairs but do not cause a supercurrent. We also show the superfluid behavior of the unconventional superconducting state and its critical temperature. It is proven directly that the flat band can effectively raise the critical temperature of superconductivity. It is implementable to simulate and control strongly-correlated electrons' behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures. Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.
Keywords:  flat-band unconventional superconductivity      antiferromagnetism      strong electron-electron interaction      superfluid weight  
Received:  03 June 2023      Revised:  07 August 2023      Accepted manuscript online:  01 September 2023
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.20.Mn (Nonconventional mechanisms)  
  74.25.Bt (Thermodynamic properties)  
Fund: Project supported by the Natural Science Basic Research Program of Shaanxi (Program Nos. 2023KJXX-064 and 2021JQ-748), the National Natural Science Foundation of China (Grant Nos. 11804213 and 12174238), and Scientific Research Foundation of Shaanxi University of Technology (Grant No. SLGRCQD2006).
Corresponding Authors:  Feng Xu     E-mail:  xufengxlx@snut.edu.cn

Cite this article: 

Feng Xu(徐峰) and Lei Zhang(张磊) Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice 2024 Chin. Phys. B 33 037402

[1] Foley A, Verret S, Tremblay A M S and Senechal D 2019 Phys. Rev. B 99 184510
[2] Qi Y,Liang L, Sun K and Gu Z C 2020 Phys. Rev. B 102 245140
[3] Gu X Y, Chen C,Leaw J L, et al., 2020 Phys. Rev. B 101 180506(R)
[4] Psaltakis G C and Penton E W 1983 J. Phys. C: Solid State Phys. 16 3913
[5] Zhang Y, Demler E and Sachdev S 2002 Phys. Rev. B 66 094501
[6] Vorontsov A B, Vavilov M G and Chubukov A V 2010 Phys. Rev. B 81 174538
[7] Kaczmarczyk J and Spalek J 2011 Phys. Rev. B 84 125140
[8] Lu Y M, Xiang T and Lee D H 2014 Nat. Phys. 10 634
[9] Romer A T, Eremin I, Hirschfeld P J and Andersen B M 2016 Phys. Rev. B 93 174519
[10] Almeida D E, Frenaandes R M and Miranda E 2017 Phys. Rev. B 96 014514
[11] Cao Y, Park J M, Watanabe K and Taniguchi T 2021 Natrure 595 526
[12] Yu W, Higgins J S,Bach P and Greene R L 2007 Phys. Rev. B 76 020503(R)
[13] Li Z, Zhou R, Liu Y, et al., 2012 Phys. Rev. B 86 180501(R)
[14] Kawasaka S, Mabuchi T, Maeda S, et al., 2015 Phys. Rev. B 92 180508(R)
[15] Rosa P F S, Kang J, Luo Y, et al., 2017 Proc. Natl. Acad. Sci. USA 114 5384
[16] Peotta R and Törmä P 2015 Nat. Commun. 6 8944
[17] Julku A, Peotta S, Vanhala T I, Kim D and Törmä P 2016 Phys. Rev. Lett. 117 045303
[18] Tovmasyan M, Peotta S, Törmä P and Huber S D 2016 Phys. Rev. B 94 245149
[19] Tovmasyan M, Peotta S, Liang L, Törmä P and Huber S D 2018 Phys. Rev. B 98 134513
[20] Xu F, Chou P, Chung C H, Lee T K and Mou C Y 2018 Phys. Rev. B 98 205103
[21] Xu F and Zhang L 2019 Chin. Phys. B 28 117403
[22] Xu F, Zhang L and Jiang L Y 2021 Chin. Phys. B 30 067401
[23] Tovmasyan M, Nieuwenburg E P and Huber S D 2013 Phys. Rev. B 88 220510
[24] Takayoshi S,Katsura H, Watanabe N and Aoki H 2013 Phys. Rev. A 88 063613
[25] Mondaini R, Batrouni G G and Gremaud B 2018 Phys. Rev. B 98 155142
[26] Jiang Y F, Jiang H C, Yao H and Kivelson S A 2017 Phys. Rev. B 95 245105
[27] Hou J, Lee T K and Chen Y 2019 Phys. Rev. B 99 094510
[28] Yang K Y, Chen W Q, Rice T M, Sigrist M and Zhang F C 2009 New J. Phys. 11 055053
[29] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi E, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[30] Chebrolu N R, Chittari B L and Jung J 2019 Phys. Rev. B 99 235417
[31] Hu X, Hyart T, Pikulin D I and Rossi E 2019 Phys. Rev. Lett. 123 237002
[32] Roy B and Juricic V 2019 Phys. Rev. B 99 121407(R)
[33] Julku A, Peltonen T J, Liang L, Heikkila T T and Torma P 2020 Phys. Rev. B 101 060505(R)
[34] Kopnin N B, Heikkila T T and Volovik G E 2011 Phys. Rev. B 83 220503
[35] Heikkila T T, Kopnin N B and Volovik G E 2011 JETP Lett. 94 233
[36] Huber S D and Altman E 2010 Phys. Rev. B 82 184502
[37] Creutz M 1999 Phys. Rev. Lett. 83 2636
[38] Misumi T and Aoki H 2017 Phys. Rev. B 96 155137
[39] Rizzi M, Cataudella V and Fazio R 2006 Phys. Rev. B 73 100502(R)
[40] Scalapino D J, White S R and Zhang S C 1992 Phys. Rev. Lett. 68 2830
[41] Scalapino D J, White S R and Zhang S C 1993 Phys. Rev. B 47 7996
[42] Zhong Y, Lu H and Luo H 2016 Eur. Phys. J. B 89 28
[43] Ogata M and Himeda A 2003 J. Phys. Soc. Jpn. 72 374
[44] Tylutki M and Torma P 2018 Phys. Rev. B 98 094513
[45] Mulkerin B C, He L, Dyke P, Vale C, Liu X and Hu H 2017 Phys. Rev. A 96 053608
[46] Matsuda Y and Shimahara H 2007 J. Phys. Soc. Jpn. 76 051005
[47] Chen L H, Wang D, Zhou Y and Wang Q H 2020 Chin. Phys. Lett. 37 017403
[48] Zhang F C, Gros C, Rice T M and Shiba H 1988 Supercond. Sci. Technol. 1 36
[49] Edegger B, Muthukumar V N and Gros C 2007 Advances in Physics 56 927
[1] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[2] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[5] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[6] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[7] Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr)
Q Sheng(盛琪), J Zhang(张建), K Huang(黄百畅), Z Ding(丁兆峰), X Peng(彭小冉), C Tan(谭程), L Shu(殳蕾). Chin. Phys. B, 2017, 26(5): 057401.
[8] Antiferromagnetism and Kondo screening on a honeycomb lattice
Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Guo Wen-Xiang (郭文祥), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2015, 24(5): 057101.
No Suggested Reading articles found!