Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034212    DOI: 10.1088/1674-1056/ad10fb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable spectral continuous shift of high-order harmonic generation in atoms by a plasmon-assisted shaping pulse

Yuan Wang(王源)1,2, Yulong Li(李玉龙)3, Yue Qiao(乔月)1,2, Na Gao(高娜)1,2, Fu-Ming Guo(郭福明)1,2, Zhou Chen(陈洲)1,2, Lan-Hai He(赫兰海)1,2,†, Yu-Jun Yang(杨玉军)1,2,‡, Xi Zhao(赵曦)4,§, and Jun Wang(王俊)1,2,¶
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China;
3 Beijing Institute of Space Launch Technology, Beijing 100076, China;
4 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract  We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse. Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse. This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics. Notably, we observe a modulated shift in the created harmonic photon energy, spanning an impressive range of 1.2 eV. This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse, directly influencing the position of the peak frequency emission. Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse, offering valuable insights into the underlying mechanisms driving this phenomenon. Furthermore, our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered. We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores. This observation introduces an innovative approach for generating semi-integer order harmonics, thus expanding our understanding of high-order harmonic generation. Ultimately, our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications, particularly those involving precise spectral control and the generation of unique harmonic patterns.
Keywords:  high-order harmonic      semi-integer-order      spectra shift      inhomogeneous field  
Received:  19 September 2023      Revised:  16 November 2023      Accepted manuscript online:  30 November 2023
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  98.62.Py (Distances, redshifts, radial velocities; spatial distribution of galaxies)  
Fund: This project was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFE134200 and 2019YFA0307700), the National Natural Science Foundation of China (Grant Nos. 11604119, 12104177, 11904192, 12074145, and 11704147), and the Fundamental Research Funds for the Central Universities (Grant Nos. GK202207012 and QCYRCXM-2022-241).
Corresponding Authors:  Lan-Hai He, Yu-Jun Yang, Xi Zhao, Jun Wang     E-mail:  helanhai@jlu.edu.cn;yangyj@jlu.edu.cn;zhaoxi719@snnu.edu.cn;wangjun86@jlu.edu.cn

Cite this article: 

Yuan Wang(王源), Yulong Li(李玉龙), Yue Qiao(乔月), Na Gao(高娜),Fu-Ming Guo(郭福明), Zhou Chen(陈洲), Lan-Hai He(赫兰海),Yu-Jun Yang(杨玉军), Xi Zhao(赵曦), and Jun Wang(王俊) Tunable spectral continuous shift of high-order harmonic generation in atoms by a plasmon-assisted shaping pulse 2024 Chin. Phys. B 33 034212

[1] L'Huillier A, Schafer K J and Kulander K C 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3315
[2] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
[3] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[4] Qiao Y, Chen J, Huo Y, Liang H, Yu R, Chen J, Liu W, Jiang S and Yang Y 2023 Phys. Rev. A 107 023523
[5] Qiao Y, Huo Y, Liang H, Chen J, Liu W, Yang Y and Jiang S 2023 Phys. Rev. B 107 075201
[6] Yuan G, Lu R, Jiang S and Dorfman K 2023 Ultrafast Sci. 3 0040
[7] Yuan H, Yang Y, Guo F, Wang J and Cui Z 2022 Opt. Express 30 19745
[8] Yuan H, Yang Y, Guo F, Wang J, Chen J, Feng W and Cui Z 2023 Opt. Express 31 24213
[9] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett. 41 014205
[10] Burnett N, Baldis H, Richardson M and Enright G 1977 Appl. Phys. Lett. 31 172
[11] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[12] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[13] Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J and Zhao Z 2020 Chin. Phys. Lett. 37 023201
[14] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B, Chen J and Lin C 2020 Phys. Rev. Appl. 13 034043
[15] Lewenstein M, Balcou P, Ivanov M Y, L'huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[16] Li X F, Qiao Y, Wu D, Yu R X, Chen J G, Wang J, Guo F M and Yang Y J 2024 Chin. Phys. B 33 013302
[17] Chang Z, Rundquist A, Wang H, Christov I, Kapteyn H and Murnane M 1998 Phys. Rev. A 58 R30
[18] Lee D G, Kim J H, Hong K H and Nam C H 2001 Phys. Rev. Lett. 87 243902
[19] Sekikawa T, Ohno T, Yamazaki T, Nabekawa Y and Watanabe S 1999 Phys. Rev. Lett. 83 2564
[20] de Bohan A, Antoine P, Milošević D B and Piraux B 1998 Phys. Rev. Lett. 81 1837
[21] Sansone G, Vozzi C, Stagira S, Pascolini M, Poletto L, Villoresi P, Tondello G, De Silvestri S and Nisoli M 2004 Phys. Rev. Lett. 92 113904
[22] Zhao X, Chen J, Fu P, Liu X, Yan Z C and Wang B 2013 Phys. Rev. A 87 043411
[23] Goulielmakis E, Schultze M, Hofstetter M, et al. 2008 Science 320 1614
[24] Chen J G, Yang Y J, Zeng S L and Liang H Q 2011 Phys. Rev. A 83 023401
[25] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[26] Neyra E, Videla F, Ciappina M F, Pérez-Hernández J, Roso L, Lewenstein M and Torchia G 2018 J. Opt. 20 034002
[27] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M and Yang Y J 2015 Phys. Rev. A 92 033848
[28] Han J X, Wang J, Qiao Y, Liu A H, Guo F M and Yang Y J 2019 Opt. Express 27 8768
[29] Ciappina M F, Biegert J, Quidant R and Lewenstein M 2012 Phys. Rev. A 85 033828
[30] Guo Y, Liu A, Wang J and Liu X 2019 Chin. Phys. B 28 094212
[31] Oldal L G, Csizmadia T, Ye P, Harshitha N G, Zair A, Kahaly S, Varjú K, Füle M and Major B 2020 Phys. Rev. A 102 013504
[32] Watson J, Sanpera A and Burnett K 1995 Phys. Rev. A 51 1458
[33] Schafer K J and Kulander K C 1997 Phys. Rev. Lett. 78 638
[34] Geissler M, Tempea G and Brabec T 2000 Phys. Rev. A 62 033817
[35] Bian X B and Bandrauk A D 2014 Phys. Rev. Lett. 113 193901
[36] Du H, Xue S, Wang H, Zhang Z and Hu B 2015 Phys. Rev. A 91 063844
[37] Qiao Y, Wang J, Yan Y, Song S, Chen Z, Liu A, Chen J, Guo F and Yang Y 2022 Chin. Phys. B 31 064214
[38] Qi T, Huo X X, Zhang J and Liu X S 2020 Chin. Phys. B 29 053201
[39] Chen Z, Song Y D and Hu Z 2014 J. Phys.: Conf. Ser. 488 032044
[40] Chen Z, Tong Q N, Zhang C C and Hu Z 2015 Chin. Phys. B 24 043303
[41] Weiner A M 2011 Opt. Commun. 284 3669
[42] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A 73 063409
[43] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D and Baumert T 2005 J. Mod. Opt. 52 2187
[44] Wang S, Khan S U, Tian X Q, Sun H B and Jiang W C 2021 Chin. Phys. B 30 083301
[1] Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields
Si-Qi Zhang(张思琪), Bing Zhang(张冰), Bo Yan(闫博), Xiang-Qian Jiang(姜向前), and Xiu-Dong Sun(孙秀冬). Chin. Phys. B, 2024, 33(2): 023301.
[2] High-order harmonic generation of ZnO crystals in chirped and static electric fields
Ling-Yu Zhang(张玲玉), Yong-Lin He(何永林), Zhuo-Xuan Xie(谢卓璇), Fang-Yan Gao(高芳艳), Qing-Yun Xu(徐清芸), Xin-Lei Ge(葛鑫磊), Xiang-Yi Luo(罗香怡), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(1): 013102.
[3] Elliptically polarized high-order harmonic generation in nitrogen molecules with cross-linearly polarized two-color laser fields
Chunyang Zhai(翟春洋), Yinmeng Wu(吴银梦), Lingling Qin(秦玲玲), Xiang Li(李翔), Luke Shi(史璐珂), Ke Zhang(张可), Shuaijie Kang(康帅杰), Zhengfa Li(李整法), Yingbin Li(李盈傧), Qingbin Tang(汤清彬), and Benhai Yu(余本海). Chin. Phys. B, 2023, 32(7): 073301.
[4] Generation of quasi-chirp-free isolated attosecond pulses from atoms under the action of orthogonal two-color combined pulse of fundamental frequency and higher intensity second harmonic fields
Rui-Xian Yu(蔚瑞贤), Yue Qiao(乔月), Ping Li(李萍), Jun Wang(王俊), Ji-Gen Chen(陈基根), Wei Feng(冯伟), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2023, 32(6): 063302.
[5] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[6] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[7] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[8] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
[9] Role of excited states in helium-like ions on high-order harmonic generation
Jiang-Hua Luo(罗江华) and Jia-Jun Xiao(肖佳俊). Chin. Phys. B, 2023, 32(11): 113201.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[12] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[13] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[14] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[15] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
No Suggested Reading articles found!