Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034211    DOI: 10.1088/1674-1056/ad12a9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Estimating the yield stress of soft materials via laser-induced breakdown spectroscopy

Shuhang Gong(龚书航)1,†, Yaju Li(李亚举)1,2,3,†, Dongbin Qian(钱东斌)1,2,3,‡, Jinrui Ye(叶晋瑞)1,2,3, Kou Zhao(赵扣)1,2,3, Qiang Zeng(曾强)2,3,§, Liangwen Chen(陈良文)1,2,3, Shaofeng Zhang(张少锋)1,2,3, Lei Yang(杨磊)1,2,3, and Xinwen Ma(马新文)1,2,3
1 Advanced Energy Science and Technology, Guangdong Laboratory, Huizhou 516000, China;
2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Taking three typical soft samples prepared respectively by loose packings of 77-, 95-, and 109-μm copper grains as examples, we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy (LIBS) of soft materials. We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity: increasing initially and then decreasing separated by a well-defined critical energy. The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength. As a result, a one-to-one correspondence can be well established between the samples' yield stress and the critical energy that is easily obtainable from LIBS measurements. This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection, real-time data collection, and minimal destructive to sample.
Keywords:  laser-induced breakdown spectroscopy      soft materials      yield stress  
Received:  10 October 2023      Revised:  01 December 2023      Accepted manuscript online:  06 December 2023
PACS:  42.62.Fi (Laser spectroscopy)  
  83.60.La (Viscoplasticity; yield stress)  
  78.70.-g (Interactions of particles and radiation with matter)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant Nos. U2241288 and 11974359).
Corresponding Authors:  Dongbin Qian, Qiang Zeng     E-mail:  qiandb@impcas.ac.cn;zeng.qiang@impcas.ac.cn

Cite this article: 

Shuhang Gong(龚书航), Yaju Li(李亚举), Dongbin Qian(钱东斌), Jinrui Ye(叶晋瑞), Kou Zhao(赵扣), Qiang Zeng(曾强), Liangwen Chen(陈良文), Shaofeng Zhang(张少锋), Lei Yang(杨磊), and Xinwen Ma(马新文) Estimating the yield stress of soft materials via laser-induced breakdown spectroscopy 2024 Chin. Phys. B 33 034211

[1] Bonn D, Denn M M, Berthier L, Divoux T and Manneville S 2017 Rev. Mod. Phys. 89 35005
[2] de Kee D 2021 Phys. Fluids 33 111301
[3] Barnes H A and Nguyen Q D 2001 J. Nonnewton Fluid Mech. 98 1
[4] Gouamba E, Goyon J and Coussot P 2019 Phys. Rev. Fluids 4 123301
[5] Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
[6] Fortes F J, Moros J, Lucena P, CabalÁn L M and Laserna J J 2013 Anal. Chem. 85 640
[7] Wang Z, Afgan M S, Gu W, Song Y, Wang Y, Hou Z, Song W and Li Z 2021 Trends Analyt. Chem. 143 116385
[8] David G, Meslin P Y, Dehouck E, Gasnault O, Cousin A, Forni O, Berger G, Lasue J, Pinet P, Wiens R C, Maurice S, Fronton J F and Rapin W 2021 Icarus 365 114481
[9] Wisbrun R, Schechter I, Niessner R, Schroeder H and Kompa K L 1994 Anal. Chem. 66 2964
[10] Viskup R, Praher B, Stehrer T, Jasik J, Wolfmeir H, Arenholz E, Pedarnig J D and Heitz J 2009 Appl. Surf. Sci. 255 5215
[11] Kakalios J 2005 J. Appl. Phys. 73 8
[12] Li Y, Li X, Li S, Zhou M, Qian D, Chen L, Yang J, Zhang S and Ma X 2021 J. Anal. At. Spectrom. 36 1969
[13] Fernandez A, Mao X L, Chan W T, Shannon M A and Russo R E 1995 Anal. Chem. 67 2444
[14] Duran J 2000 Sands, Powders, And Grains: An Introduction to the Physics of Granular Materials (New York: Springer) pp. 119-153
[15] Marston J O and Pacheco-Vázquez F 2019 Phys. Rev. E 99 30901
[16] Li X, Li Y, Li S, Zhou M, Chen L, Meng J, Qian D, Yang J, Zhang S, Wu Y and Ma X 2021 Phys. Rev. Appl. 16 24017
[17] Li S, Li Y, Li X, Chen L, Qian D, Zhang S and Ma X 2022 Chemosensors 10 144
[18] Li X, Liu X, Gong S, Li Y, Chen L, Qian D, Zhang S and Ma X 2023 J. Anal. At. Spectrom 38 902
[19] Cristoforetti G, Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V and Omenetto N 2010 Spectrochim. Acta Part B At. Spectrosc. 65 86
[20] Hang Y H, Qiu Y, Zhou Y, Liu T, Zhu B, Liao K, Shi M X and Xue F 2022 Chin. Phys. B 31 24212
[21] Zhang S, Wang X, He M, Jiang Y, Zhang B, Hang W and Huang B 2014 Spectrochim. Acta Part B At. Spectrosc. 97 13
[22] Ivković M and Konjević N 2017 Spectrochim. Acta Part B At. Spectrosc. 131 79
[23] Kagawa K, Lie T, Hedwig R, Abdulmajid S, Suliyanti M and Kurniawan H 2000 Jpn. J. Appl. Phys. 39 264
[24] Tsuyuki K, Miura S, Idris N, Kurniawan K, Lie T and Kagawa K 2006 Appl. Spectrosc. 60 61
[1] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[2] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[3] Mechanism from particle compaction to fluidization of liquid-solid two-phase flow
Yue Zhang(张悦), Jinchun Song(宋锦春), Lianxi Ma(马连喜), Liancun Zheng(郑连存), Minghe Liu(刘明贺). Chin. Phys. B, 2020, 29(1): 014702.
[4] Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis
Hong-Xing Yang(杨洪星), Hong-Bo Fu(付洪波), Hua-Dong Wang(王华东), Jun-Wei Jia(贾军伟), Markus W Sigrist, Feng-Zhong Dong(董凤忠). Chin. Phys. B, 2016, 25(6): 065201.
[5] Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study
Liu Li-Li (刘利利), Wu Xiao-Zhi (吴小志), Wang Rui (王锐), Li Wei-Guo (李卫国), Liu Qing (刘庆). Chin. Phys. B, 2015, 24(7): 077102.
[6] Polarization characteristics of single shot nanosecond laser induced breakdown spectroscopy of Al
Liu Jia (刘佳), Tao Hai-Yan (陶海岩), Gao Xun (高勋), Hao Zuo-Qiang (郝作强), Lin Jing-Quan (林景全). Chin. Phys. B, 2013, 22(4): 044206.
[7] A comparison of single shot nanosecond and femtosecond polarization-resolved laser-induced breakdown spectroscopy of Al
Nakimana Agnes, Tao Hai-Yan (陶海岩), Hao Zuo-Qiang (郝作强), Sun Chang-Kai (孙长凯), Gao Xun (高勋), Lin Jing-Quan (林景全). Chin. Phys. B, 2013, 22(1): 014209.
[8] High-sensitive automatic transient laser-induced breakdown spectroscopy system with high temporal and spatial resolution
Liu Qiao-Jun (刘巧君), S. K. Fong (冯瑞权), Andrew Y. S. Cheng (郑玉臣), Luo Shi-Rong (罗时荣), K. S. Tam (谭建成), Zhu Jian-Hua (朱建华), A. Viseu (冼保生). Chin. Phys. B, 2012, 21(8): 087402.
[9] The high dependence of polarization resolved laser-induced breakdown spectroscopy on experimental conditions
Nakimana Agnes, Hao Zuo-Qiang(郝作强), Liu Jia(刘佳), Tao Hai-Yan(陶海岩), Gao Xun(高勋), Sun Chang-Kai(孙长凯), and Lin Jing-Quan(林景全) . Chin. Phys. B, 2012, 21(7): 074204.
No Suggested Reading articles found!