1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2 University of Chinese Academy of Sciences & CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
We report the electrical transport properties of InSe flakes electrostatically gated by a solid ion conductor. The large tuning capability of the solid ion conductor as gating dielectric is confirmed by the saturation gate voltage as low as ∼1 V and steep subthreshold swing (83 mV/dec). The p-type conduction behavior of InSe is obtained when negative gate voltages are biased. Chemical doping of the solid ion conductor is suppressed by inserting a buffer layer of hexagonal boron nitride (h-BN) between InSe and the solid-ion-conductor substrate. By comparing the performance of devices with and without h-BN, the capacitance of solid ion conductors is extracted to be the same as that of ∼2 nm h-BN, and the mobility of InSe on solid ion conductors is comparable to that on the SiO2 substrate. Our results show that solid ion conductors provide a facile and powerful method for electrostatic doping.
Received: 15 May 2020
Revised: 05 July 2020
Accepted manuscript online: 15 July 2020
Fund: the National Key Research and Development Projects of China (Grant Nos. 2016YFA0202300 and 2018FYA0305800), the National Natural Science Foundation of China (Grant Nos. 61674170 and 61888102), the K. C. Wong Education Foundation, the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y201902).
Zhang Zhou(周璋), Liangmei Wu(吴良妹), Jiancui Chen(陈建翠), Jiajun Ma(马佳俊), Yuan Huang(黄元), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧) Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures 2020 Chin. Phys. B 29 118501
Fig. 1.
Schematic and optical images of the Li-SIC devices. (a) and (b) Schematic of the Li-SIC gated InSe field-effect transistor (a) and InSe/h-BN heterostructured transistor (b) with Ti/Au as the contact electrodes and the measurement setup. (c) and (d) Optical microscope images of a typical device on an InSe thin flake (c) and on an InSe/h-BN heterostructure (d), respectively. The white and yellow dashed lines indicate the outline of the InSe flake and the h-BN flake, respectively. The scale bar is 10 μm in (c) and (d).
Fig. 2.
Device performance of Li-SIC gated InSe thin flakes. (a) Transfer curves (Ids vs. VG) of the device in Fig. 1(c), measured at 260 K for Vds = 0.1 V (dark blue line) in logarithmic scales and 0.3 V in logarithmic (light blue line) and linear (red line) scales. The two black dotted lines are linearly fitted in the linear region of red line and in the subthreshold region of light blue line to extract μFE of 129 cm2 ⋅ V–1 ⋅ s–1 and SS of 83 mV/dec, respectively. (b) Transfer curves of negative VG for Vds = 0.05, 0.1 and 0.4 V. Inset: the accompanying gate-dependent leakage current Ig. (c) The temperature-dependent resistance at VG = 3.6 V and 4.0 V, which shows the semiconducting to metallic transition when further increasing VG to 4.0 V. Inset: the linear output curve (Ids vs. Vds) for VG = 3.6 V at 260 K.
Fig. 3.
Device performance of the Li-SIC gated InSe/h-BN heterostructure. (a) Transfer curves (Ids vs. VG) of the device in Fig. 1(d) on an InSe/h-BN heterostructure on Li-SIC, measured at 260 K for Vds = 0.3 V in logarithmic (blue) and linear (red) scales. The device performance keeps stable after one year. The two black dotted lines are linearly fitted in the linear region of red line and in the subthreshold region of light blue line to extract μFE of 160 cm2 ⋅ V–1 ⋅ s–1 and SS of 204 mV/dec, respectively. (b) Output curves (Ids vs. Vds) at different gate voltages. (c) The temperature dependent resistance at VG of 2 V, 3 V and 5 V. It all shows semiconducting behavior. (d) Gate current for devices with/without h-BN in between InSe and Li-SIC when sweeping VG from 0 to 2.0 V. The leakage current is suppressed with h-BN thin flakes.
[1]
Ahn C H, Bhattacharya A, Di Ventra M, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D, Triscone J M 2006 Rev. Mod. Phys.78 1185 DOI: 10.1103/RevModPhys.78.1185
[2]
Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett.12 1136 DOI: 10.1021/nl2021575
[3]
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature556 80 DOI: 10.1038/nature26154
[4]
Pei T, Bao L, Ma R, Song S, Ge B, Wu L, Zhou Z, Wang G, Yang H, Li J, Gu C, Shen C, Du S, Gao H J 2016 Adv. Electron. Mater.2 1600292 DOI: 10.1002/aelm.201600292
[5]
Wang G C, Wu L M, Yan J H, Zhou Z, Ma R S, Yang H F, Li J J, Gu C Z, Bao L H, Du S X, Gao H J 2018 Chin. Phys. B27 077303 DOI: 10.1088/1674-1056/27/7/077303
[6]
Bisri S Z, Shimizu S, Nakano M, Iwasa Y 2017 Adv. Mater.29 1607054 DOI: 10.1002/adma.201607054
[7]
Yu Y, Yang F, Lu X F, Yan Y J, ChoYong H, Ma L, Niu X, Kim S, Son Y W, Feng D, Li S, Cheong S W, Chen X H, Zhang Y 2015 Nat. Nanotechnol.10 270 DOI: 10.1038/nnano.2014.323
[8]
Braga D, Gutiérrez Lezama I, Berger H, Morpurgo A F 2012 Nano Lett.12 5218 DOI: 10.1021/nl302389d
[9]
Dong L, Wang A, Li E, Wang Q, Li G, Huan Q, Gao H J 2019 Chin. Phys. Lett.36 028102 DOI: 10.1088/0256-307X/36/2/028102
[10]
Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X, Gao H J 2018 Chin. Phys. B27 086804 DOI: 10.1088/1674-1056/27/8/086804
[11]
Liu H, Bao L, Zhou Z, Che B, Zhang R, Bian C, Ma R, Wu L, Yang H, Li J, Gu C, Shen C M, Du S, Gao H J 2019 Nano Lett.19 4551 DOI: 10.1021/acs.nanolett.9b01412
[12]
Guo H, Chen H, Que Y D, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X, Gao H J 2019 Chin. Phys. B28 056107 DOI: 10.1088/1674-1056/28/5/056107
[13]
Li L J, O’Farrell E C T, Loh K P, Eda G, Özyilmaz B, Castro Neto A H 2016 Nature529 185 DOI: 10.1038/nature16175
Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B, Chen X H 2017 Phys. Rev. B95 020503 DOI: 10.1103/PhysRevB.95.020503
[22]
Ying T P, Wang M X, Wu X X, Zhao Z Y, Zhang Z Z, Song B Q, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Jia X Y, Yang W, Chen X H, Li S Y 2018 Phys. Rev. Lett.121 207003 DOI: 10.1103/PhysRevLett.121.207003
Zeng J, Liu E, Fu Y, Chen Z, Pan C, Wang C, Wang M, Wang Y, Xu K, Cai S, Yan X, Wang Y, Liu X, Wang P, Liang S J, Cui Y, Hwang H Y, Yuan H, Miao F 2018 Nano Lett.18 1410 DOI: 10.1021/acs.nanolett.7b05157
[25]
Philippi M, Gutiérrez-Lezama I, Ubrig N, Morpurgo A F 2018 Appl. Phys. Lett.113 033502 DOI: 10.1063/1.5038407
[26]
Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol.12 223 DOI: 10.1038/nnano.2016.242
[27]
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol.9 372 DOI: 10.1038/nnano.2014.35
[28]
Wu L, Shi J, Zhou Z, Yan J, Wang A, Bian C, Ma J, Ma R, Liu H, Chen J, Huang Y, Zhou W, Bao L, Ouyang M, Pantelides S T, Gao H J 2020 Nano Res.13 1127 DOI: 10.1007/s12274-020-2757-1
[29]
Hamer M, Tóvári E, Zhu M, Thompson M D, Mayorov A, Prance J, Lee Y, Haley R P, Kudrynskyi Z R, Patanè A, Terry D, Kovalyuk Z D, Ensslin K, Kretinin A V, Geim A, Gorbachev R 2018 Nano Lett.18 3950 DOI: 10.1021/acs.nanolett.8b01376
[30]
Premasiri K, Radha S K, Sucharitakul S, Kumar U R, Sankar R, Chou F C, Chen Y T, Gao X P A 2018 Nano Lett.18 4403 DOI: 10.1021/acs.nanolett.8b01462
[31]
Zeng J, Liang S J, Gao A, Wang Y, Pan C, Wu C, Liu E, Zhang L, Cao T, Liu X, Fu Y, Wang Y, Watanabe K, Taniguchi T, Lu H, Miao F 2018 Phys. Rev. B98 125414 DOI: 10.1103/PhysRevB.98.125414
[32]
Lin C Y, Ulaganathan R K, Sankar R, Chou F C 2017 AIP Adv.7 075314 DOI: 10.1063/1.4995589
Bediako D K, Rezaee M, Yoo H, Larson D T, Zhao S Y F, Taniguchi T, Watanabe K, Brower-Thomas T L, Kaxiras E, Kim P 2018 Nature558 425 DOI: 10.1038/s41586-018-0205-0
[35]
Sze S M, Ng K K 2006 Physics of Semiconductor Devices New York John Wiley & Sons 315
[36]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol.5 722 DOI: 10.1038/nnano.2010.172
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.