Special Issue:
TOPICAL REVIEW — 2D materials: physics and device applications
|
TOPICAL REVIEW—2D materials: physics and device applications |
Prev
Next
|
|
|
Atomic crystals resistive switching memory |
Chunsen Liu(刘春森), David Wei Zhang(张卫), Peng Zhou(周鹏) |
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, China |
|
|
Abstract Facing the growing data storage and computing demands, a high accessing speed memory with low power and non-volatile character is urgently needed. Resistive access random memory with 4F2 cell size, switching in sub-nanosecond, cycling endurances of over 1012 cycles, and information retention exceeding 10 years, is considered as promising next-generation non-volatile memory. However, the energy per bit is still too high to compete against static random access memory and dynamic random access memory. The sneak leakage path and metal film sheet resistance issues hinder the further scaling down. The variation of resistance between different devices and even various cycles in the same device, hold resistive access random memory back from commercialization. The emerging of atomic crystals, possessing fine interface without dangling bonds in low dimension, can provide atomic level solutions for the obsessional issues. Moreover, the unique properties of atomic crystals also enable new type resistive switching memories, which provide a brand-new direction for the resistive access random memory.
|
Received: 12 September 2016
Revised: 29 October 2016
Accepted manuscript online:
|
PACS:
|
32.90.+a
|
(Other topics in atomic properties and interactions of atoms with photons)
|
|
51.50.+v
|
(Electrical properties)
|
|
63.22.Np
|
(Layered systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376093 and 61622401) and the National Key Research and Development Program of China (Grant No. 2016YFA0203900). |
Corresponding Authors:
Peng Zhou
E-mail: pengzhou@fudan.edu.cn
|
Cite this article:
Chunsen Liu(刘春森), David Wei Zhang(张卫), Peng Zhou(周鹏) Atomic crystals resistive switching memory 2017 Chin. Phys. B 26 033201
|
[1] |
Wong H S and Salahuddin S 2015 Nat Nanotechnol 10 191
|
[2] |
Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
|
[3] |
Chua L O 1971 IEEE Transactions on Circuit Theory 18 507
|
[4] |
Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
|
[5] |
Govoreanu B, Kar G S, Chen Y and Paraschiv V 2011 Electron Devices Meeting 31.6.1
|
[6] |
Torrezan A C, Strachan J P, Medeirosribeiro G and Williams R S 2011 Nanotechnology 22 485203
|
[7] |
Lee M J, Chang B L, Lee D, Lee S R, Man C, Ji H H, Kim Y B, Kim C J, Seo D H and Seo S 2011 Nat. Mater. 10 625
|
[8] |
Wei Z, Kanzawa Y, Arita K and Katoh Y 2009 IEEE International Electron Devices Meeting 1
|
[9] |
Kim I, Siddik M, Shin J, Biju K P, Jung S and Hwang H 2011 Appl. Phys. Lett. 99 042101
|
[10] |
Seo J W, Park J W, Lim K S, Yang J H and Kang S J 2008 Appl. Phys. Lett. 93 223505
|
[11] |
Kim K H, Gaba S, Wheeler D, Cruz-Albrecht J M, Hussain T, Srinivasa N and Lu W 2012 Nano Lett. 12 389
|
[12] |
Thomas A 2013 J. Phys. D:Appl. Phys. 46 093001
|
[13] |
Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
|
[14] |
Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 Nat. Mater. 12 114
|
[15] |
Tuma T, Pantazi A, Gallo M L, Sebastian A and Eleftheriou E 2016 Nat. Nanotechnol. 11 693
|
[16] |
Colopy S and Bjorling D 2011 Appl. Phys. A 102 1019
|
[17] |
Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
|
[18] |
Linn E, Rosezin R, Kügeler C and Waser R 2010 Nat. Mater. 9 403
|
[19] |
Sasago Y, Kinoshita M, Morikawa T and Kurotsuchi K 2009 Digest of Technical Papers-Symposium on VLSI Technology 109 24
|
[20] |
Yu S, Chen H Y, Deng Y, Gao B, Jiang Z, Kang J and Wong H S P 2013 Digest of Technical Papers-Symposium on VLSI Technology T158
|
[21] |
Chen H Y, Yu S, Gao B, Liu R, Jiang Z, Deng Y, Chen B, Kang J and Wong H S 2013 Nanotechnology 24 465201
|
[22] |
Liang J, Yeh S, Wong S S and Wong H S P 2012 Memory Workshop (IMW) 4th IEEE International 1
|
[23] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[24] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[25] |
Geim A K 2009 Science 324 1530
|
[26] |
Novoselov K, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S and Firsov A 2005 Nature 438 197
|
[27] |
Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
|
[28] |
Moser J, Barreiro A and Bachtold A 2007 Appl. Phys. Lett. 91 163513
|
[29] |
Yu J, Liu G, Sumant A V, Goyal V and Balandin A A 2012 Nano Lett. 12 1603
|
[30] |
Yu Y J, Zhao Y, Ryu S, Brus L E, Kim K S and Kim P 2009 Nano Lett. 9 3430
|
[31] |
Shi Y, Kim K K, Reina A, Hofmann M, Li L J and Kong J 2010 ACS Nano 4 2689
|
[32] |
Kwon K C, Choi K S and Kim S Y 2012 Adv. Funct. Mater. 22 4724
|
[33] |
Kang B, Lim S, Lee W H, Jo S B and Cho K 2013 Adv. Mater. 25 5856
|
[34] |
Li H, Zhang Q, Liu C, Xu S and Gao P 2011 ACS Nano 5 3198
|
[35] |
Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J and Dai H 2009 Science 324 768
|
[36] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[37] |
Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703
|
[38] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 474
|
[39] |
Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2012 ACS Nano 7 791
|
[40] |
Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R and Chen Y 2014 Nat. Nanotechnol. 9 111
|
[41] |
Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788
|
[42] |
Liu W, Kang J, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 Nano Lett. 13 1983
|
[43] |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[44] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[45] |
Chai Y, Wu Y, Takei K, Chen H Y, Yu S, Chan P C, Javey A and Wong H S P 2010 IEEE, IEDM Technical Digest:San Francisco, CA 214-217
|
[46] |
Lee S, Sohn J, Jiang Z, Chen H Y and Philip Wong H S 2015 Nat. Commun. 6 8407
|
[47] |
Yang Y, Jihang L, Seunghyun L, Liu C H, Zhong Z and Wei L 2014 Adv. Mater. 26 3693
|
[48] |
Min Q, Pan Y, Liu F, Miao W, Shen H, He D, Wang B, Yi S, Feng M and Wang X 2014 Adv. Mater. 26 3275
|
[49] |
Chang K C, Zhang R, Chang T C, Tsai T M, Lou J, Chen J H, Young T F, Chen M C, Yang Y L and Pan Y C 2013 Electron Device Letters, IEEE 34 677
|
[50] |
Yang P K, Chang W Y, Teng P Y, Jeng S F, Lin S J, Chiu P W and He J H 2013 Proceedings of the IEEE 101 1732
|
[51] |
Sangwan V K, Jariwala D, Kim I S, Chen K S, Marks T J, Lauhon L J and Hersam M C 2015 Nat. Nanotechnol. 10 403
|
[52] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[53] |
Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
|
[54] |
Waser R and Aono M 2007 Nat. Mater. 6 833
|
[55] |
Huang H H, Shih W C and Lai C H 2010 Appl. Phys. Lett. 96 193505
|
[56] |
Inoue I H, Yasuda S, Akinaga H and Takagi H 2007 Phys. Rev. B 77 035105
|
[57] |
Lee M J, Lee D, Cho S H, Hur J H, Lee S M, Seo D H, Kim D S, Yang M S, Lee S and Hwang E 2013 Nat. Commun. 4 8
|
[58] |
Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W and Brus L E 2010 Nano Lett. 10 4944
|
[59] |
Tian H, Chen H Y, Gao B, Yu S, Liang J, Yang Y, Xie D, Kang J, Ren T L and Zhang Y 2013 Nano Lett. 13 651
|
[60] |
Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R and Song Y I 2010 Nat. Nanotechnol. 5 574
|
[61] |
Suarez A M, Radovic L R, Barziv E and Sofo J O 2011 Phys. Rev. Lett. 106 1567
|
[62] |
Lee G, Lee B, Kim J and Cho K 2009 Physics (College Park Md) 113 14225
|
[63] |
Tsetseris L, Logothetidis S and Pantelides S T 2009 Appl. Phys. Lett. 94 161903
|
[64] |
Qian K, Tay R Y, Nguyen V C, Wang J, Cai G, Chen T, Teo E H T and Lee P S 2016 Adv. Funct. Mater. 26 2176
|
[65] |
He C, Zhuge F, Zhou X, Li M, Zhou G, Liu Y, Wang J, Chen B, Su W and Liu Z 2009 Appl. Phys. Lett. 95 232101
|
[66] |
Liu G, Zhuang X, Chen Y, Zhang B, Zhu J, Zhu C X, Neoh K G and Kang E T 2009 Appl. Phys. Lett. 95 253301
|
[67] |
Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O and Ruoff R S 2010 Nano Lett 10 4381
|
[68] |
Hong S K, Kim J E, Kim S O, Choi S Y and Cho B J 2010 Electron Device Letters, IEEE 31 1005
|
[69] |
Cui P, Seo S, Lee J, Wang L, Lee E, Min M and Lee H 2011 ACS Nano 5 6826
|
[70] |
Kim I, Siddik M, Shin J, Biju K P, Jung S and Hwang H 2011 Appl. Phys. Lett 99 042101
|
[71] |
Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Mishchenko A, Georgiou T, Katsnelson M, Eaves L and Morozov S 2012 Science 335 947
|
[72] |
Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J and Makarovsky O 2013 Nat. Nanotechnol. 8 100
|
[73] |
Chen C Y, Retamal J R D, Wu I, Lien D H, Chen M W, Ding Y, Chueh Y L, Wu C and He J H 2012 ACS Nano 6 9366
|
[74] |
Li Q H, Gao T, Wang Y G and Wang T H 2005 Appl. Phys. Lett. 86 123117
|
[75] |
Chen C Y, Lin C A, Chen M J, Lin G R and He J H 2009 Nanotechnology 20 7978
|
[76] |
Hong W K, Jo G, Kwon S S and Song S 2008 IEEE Trans Electron Devices 55 3020
|
[77] |
Liu S, Lu N, Zhao X, Xu H, Banerjee W, Lv H, Long S, Li Q, Liu Q and Liu M 2016 Adv. Mater. 28 10263
|
[78] |
Standley B, Bao W, Zhang H, Bruck J, Lau C N and Bockrath M 2008 Nano Lett. 8 3345
|
[79] |
Irrera A, Iacona F, Crupi I, Presti C D, Franzò G, Bongiorno C, San-filippo D, Stefano G D, Piana A and Fallica P G 2006 Nanotechnology 17 1428
|
[80] |
Franzò G, Irrera A, Moreira E C, Miritello M, Iacona F, Sanfilippo D, Stefano G D, Fallica P G and Priolo F 2002 Appl. Phys. A 74 1
|
[81] |
Yao J, Zhong L, Natelson D and Tour J M 2012 Sci. Rep. 2 242
|
[82] |
Yao J, Sun Z, Zhong L, Natelson D and Tour J M 2010 Nano Lett. 10 4105
|
[83] |
Hsu I K, Kumar R, Bushmaker A, Cronin S B, Pettes M T, Shi L, Brintlinger T, Fuhrer M S and Cumings J 2008 Appl. Phys. Lett. 92 499
|
[84] |
Deshpande V V, Hsieh S, Bushmaker A W, Bockrath M and Cronin S B 2009 Phys. Rev. Lett. 102 105501
|
[85] |
Liao A, Alizadegan R, Ong Z Y, Dutta S, Xiong F, Hsia K J and Pop E 2010 Phys. Rev. B 82 1616
|
[86] |
Liao A D, Wu J Z, Wang X, Tahy K, Jena D, Dai H and Pop E 2011 Phys. Rev. Lett. 106 311
|
[87] |
van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554
|
[88] |
Najmaei S, Yuan J, Zhang J, Ajayan P and Lou J 2015 Acc. Chem. Res. 48 31
|
[89] |
Azizi A, Zou X, Ercius P, Zhang Z, Elías A L, Perea-López N, Stone G, Terrones M, Yakobson B I and Alem N 2014 Nat. Commun. 5 4867
|
[90] |
He C, Shi Z, Zhang L, Wei Y, Rong Y, Shi D and Zhang G 2012 ACS Nano 6 4214
|
[91] |
Yao J, Lin J, Dai Y, Ruan G, Yan Z, Li L, Zhong L, Natelson D and Tour J M 2012 Nat. Commun. 3 1101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|