CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Disorder effects in NbTiN superconducting resonators |
Wei-Tao Lyu(吕伟涛)1, Qiang Zhi(支强)1, Jie Hu(胡洁)2, Jing Li(李婧)1, and Sheng-Cai Shi(史生才)1,† |
1 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China; 2 GEPI, Observatoire de Paris, PSL Université, CNRS, Paris 75014, France |
|
|
Abstract Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap ($\varDelta$), critical temperature ($T_{\rm c}$), and quasiparticle density of states (QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro-phonon coupling, can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the $\varDelta $, $T_{\rm c}$, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide (CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter $\alpha $ and the critical temperature in the pure state $T_{\rm c}^{\rm P}$ of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.
|
Received: 30 July 2023
Revised: 13 October 2023
Accepted manuscript online: 17 October 2023
|
PACS:
|
74.62.En
|
(Effects of disorder)
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
85.25.Pb
|
(Superconducting infrared, submillimeter and millimeter wave detectors)
|
|
74.25.nn
|
(Surface impedance)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11925304 and 12020101002) and the Chinese Academy of Sciences Program (Grant No. GJJSTD20210002). |
Corresponding Authors:
Sheng-Cai Shi
E-mail: scshi@pmo.ac.cn
|
Cite this article:
Wei-Tao Lyu(吕伟涛), Qiang Zhi(支强), Jie Hu(胡洁), Jing Li(李婧), and Sheng-Cai Shi(史生才) Disorder effects in NbTiN superconducting resonators 2024 Chin. Phys. B 33 027401
|
[1] Karpov A, Miller D, Rice F, Stern J A, Bumble B, LeDuc H G and Zmuidzinas J 2007 IEEE Trans. Appl. Supercond. 17 343 [2] Li J, Takeda M, Wang Z, Shi S C and Yang J 2008 Appl. Phys. Lett. 92 222504 [3] Jiang L, Shiba S, Shiino T, Shimbo K, Sakai N, Yamakura T and Yamamoto S 2010 Superconductor Science and Technology 23 045025 [4] Leduc H G, Bumble B, Day P K, Eom B H, Gao J, Golwala S, Mazin B A, McHugh S, Merrill A, Moore D C, Noroozian O, Turner A D and Zmuidzinas J 2010 Appl. Phys. Lett. 97 102509 [5] Barends R, Hortensius H L, Zijlstra T, Baselmans J J A, Yates S J C, Gao J R and Klapwijk T M 2008 Appl. Phys. Lett. 92 223502 [6] Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D P, DiCarlo L and Vandersypen L M K 2016 Phys. Rev. Appl. 5 044004 [7] Driessen E F C, Coumou P C J J, Tromp R R, de Visser P J and Klapwijk T M 2012 Phys. Rev. Lett. 109 107003 [8] Bueno J, Coumou P C J J, Zheng G, de Visser P J, Klapwijk T M, Driessen E F C, Doyle S and Baselmans J J A 2014 Appl. Phys. Lett. 105 192601 [9] Cheng B, Wu L, Laurita N J, Singh H, Chand M, Raychaudhuri P and Armitage N P 2016 Phys. Rev. B. 93 180511 [10] Hazra D, Tsavdaris N, Mukhtarova A, Jacquemin M, Blanchet F, Albert R, Jebari S, Grimm A, Konar A, Blanquet E, Mercier F, Chapelier C and Hofheinz M 2018 Phys. Rev. B 97 144518 [11] Skalski S, Betbeder-Matibet O and Weiss P R 1964 Phys. Rev. 136(6A) A1500 [12] Gantmakher V F and Dolgopolov V T 2010 Physics-Uspekhi 53 1 [13] Sacépé B, Chapelier C, Baturina T I, Vinokur V M, Baklanov M R and Sanquer M 2010 Nat. Commun. 1 140 [14] Gueron S 1997 Quasiparticles in a diffusive conductor: Interaction and pairing Ph. D. Dissertation (Université Pierre et Marie Curie-Paris) [15] Eilenberger G 1968 Zeitschrift für Physik A Hadrons and nuclei 214 195 [16] Usadel K D 1970 Phys. Rev. Lett. 25 507 [17] Wang G, Barry P S, Cecil T, Chang C L, Li J, Lisovenko M and Zhang J 2023 IEEE Trans. on Appl. Supercond. 33 1 [18] Mattis D C and Bardeen J 1958 Phys. Rev. 111 412 [19] Nam S B 1967 Phys. Rev. 156 487 [20] Feigel'man M V and Skvortsov M A 2012 Phys. Rev. Lett. 109 147002 [21] Coumou P C J J 2015 Electrodynamics of strongly disordered superconductors Ph. D. Dissertation (Kavli Institute of Nanoscience Delft) [22] Belzig W, Wilhelm F K, Bruder C, Schön G and Zaikin A D 1999 Superlattices Microstruct. 25 1251 [23] Sacépé B, Chapelier C, Baturina T I, Vinokur V M, Baklanov M R and Sanquer M 2008 Phys. Rev. Lett. 101 157006 [24] Abrikosov A A and Gor'kov L P 1960 Zhur Eksptl Teor. Fiz 39 1781 [25] Mackenzie A P, Haselwimmer R K W, Tyler A W, Lonzarich G G, Mori Y, Nishizaki S and Maeno Y 1998 Phys. Rev. Lett. 80 161 [26] Gao J 2008 The physics of superconducting microwave resonators Ph. D. Dissertation (California Institute of Technology) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|