Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 128401    DOI: 10.1088/1674-1056/ad02e8
Special Issue: SPECIAL TOPIC—Post-Moore era: Materials and device physics
SPECIAL TOPIC—Post-Moore era: Materials and device physics Prev   Next  

Reconfigurable Mott electronics for homogeneous neuromorphic platform

Zhen Yang(杨振)1, Ying-Ming Lu(路英明)1, and Yu-Chao Yang(杨玉超)1,2,3,4,†
1 Beijing Advanced Innovation Center for Integrated Circuit, School of Integrated Circuits, Peking University, Beijing 100871, China;
2 School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China;
3 Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China;
4 Center for Brain Inspired Intelligence, Chinese Institute for Brain Research(CIBR), Beijing 102206, China
Abstract  To simplify the fabrication process and increase the versatility of neuromorphic systems, the reconfiguration concept has attracted much attention. Here, we developed a novel electrochemical VO2 (EC-VO2) device, which can be reconfigured as synapses or LIF neurons. The ionic dynamic doping contributed to the resistance changes of VO2, which enables the reversible modulation of device states. The analog resistance switching and tunable LIF functions were both measured based on the same device to demonstrate the capacity of reconfiguration. Based on the reconfigurable EC-VO2, the simulated spiking neural network model exhibited excellent performances by using low-precision weights and tunable output neurons, whose final accuracy reached 91.92%.
Keywords:  Mott electronics      reconfigurable      neuromorphic computing      VO2  
Received:  05 August 2023      Revised:  28 September 2023      Accepted manuscript online:  13 October 2023
PACS:  84.30.-r (Electronic circuits)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  87.85.dq (Neural networks)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.61925401, 92064004, 61927901, and 92164302) and the 111 Project (Grant No.B18001). Y. Y. acknowledges support from the Fok Ying-Tong Education Foundation and the Tencent Foundation through the XPLORER PRIZE. The authors acknowledge the support of TOF-SIMS characterization by Dr. Tinglu Song and the first-principal computation by Dr. Bing Zheng from Beijing Institute of Technology.
Corresponding Authors:  Yu-Chao Yang     E-mail:  yuchaoyang@pku.edu.cn

Cite this article: 

Zhen Yang(杨振), Ying-Ming Lu(路英明), and Yu-Chao Yang(杨玉超) Reconfigurable Mott electronics for homogeneous neuromorphic platform 2023 Chin. Phys. B 32 128401

[1] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[2] Mankowitz D J, Michi A, Zhernov A, et al. 2023 Nature 618 257
[3] Yu S 2018 Proc. IEEE 106 260
[4] Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668
[5] Zidan M A, Strachan J P and Lu W D 2018 Nat. Electron. 1 22
[6] Huang X H, Liu C S, Jiang Y G and Zhou P 2020 Chin. Phys. B 29 078504
[7] Sebastian A, Gallo M L, Aljameh R K and Eleftheriou E 2020 Nat. Nanotechnol. 15 529
[8] Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J and Qian H 2020 Nature 577 641
[9] Duan Q X, Jing Z K, Zou X L, Wang Y H, Yang K, Zhang T, Wu S, Huang R and Yang Y C 2020 Nat. Commun. 11 3399
[10] Liu K Q, Zhang T, Dang B J, Bao L, Xu L Y, Cheng C D, Yang Z, Huang R and Yang Y C 2022 Nat. Electron. 5 761
[11] Marković D, Mizrahi A, Querlioz D and Grollier J 2020 Nat. Rev. Phys. 2 499
[12] Liu R, He Y L, Jiang S S, Zhu L, Chen C S, Zhu Y and Wan Q 2021 Chin. Phys. B 30 058102
[13] Wang X, Ge C, Li G, Guo E J, He M, Wang C, Yang G Z and Jin K J 2020 Chin. Phys. B 29 098101
[14] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[15] Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L, Xia Q F and Yang J J 2020 Nat. Rev. Mater. 5 173
[16] Kumar S, Wang X X, Strachan J P, Yang Y C and Lu W D 2022 Nat. Rev. Mater. 7 575
[17] Zhang X M, Zhuo Y, Luo Q, Wu Z H, Midya R, Wang Z R, Song W H, Wang R, Upadhyay N K, Fang Y L, Kiani F, Rao M Y, Yang Y, Xia Q F, Liu Q, Liu M and Yang J J 2020 Nat. Commun. 11 51
[18] Prezioso M, Mahmoodi M R, Bayat F M, Nili H, Kim H, Vincent A and Strukov D B 2018 Nat. Commun. 9 5311
[19] Zhang X M, Wang W, Liu Q, Zhao X L, Wei J S, Cao R R, Yao Z H, Zhu X L, Zhang F, Lv H B, Long S B and Liu M 2018 IEEE Electron Dev. Lett. 39 308
[20] Dev D, Krishnaprasad A, Shawkat M S, He Z Z, Das S, Fan D L, Chung H S, Jung Y and Roy T 2021 Chin. Phys. B 30 058702
[22] Li W H, Lan X K, Liu X H, Zhang E Z, Deng Y C and Wang K Y 2022 Chin. Phys. B 31 117106
[23] Lin X H, Long H T, Ke S, Wang Y Y, Zhu Y, Chen C S, Wan C J and Wan Q 2022 Chin. Phys. Lett. 39 068501
[24] Zhao Y H, Liu B, Yang J L, He J and Jiang J 2020 Chin. Phys. Lett. 37 088501
[25] Zhou H J, Li Y and Miao X S 2022 Sci. China Inf. Sci. 65 122410
[26] Cheng C D, Tiw P J, Cai Y M, Yan X Q, Yang Y C and Huang R 2021 Sci. China Inf. Sci. 64 221402
[27] Zhu Y, He Y L, Chen C S, Zhu L, Wan C J and Wan Q 2022 Sci. China Inf. Sci. 65 162401
[28] Wang Z R, Joshi S, Yang J J, et al. 2018 Nat. Electron. 1 137
[29] Zhang H T, Park T J, Ramanathan S, et al. 2022 Science 375 533
[30] Fu Y Y, Zhou Y, Huang X D, Dong B Y, Zhuge F W, Li Y, He Y L, Chai Y and Miao X S 2022 Adv. Funct. Mater. 32 2111996
[31] Wang T Y, Meng J L, Zhou X F, Liu Y, He Z Y, Han Q, Li Q X, Yu J J, Li Z H, Liu Y K, Zhu H, Sun Q Q, Zhang D W, Chen P N, Peng H S and Chen L 2022 Nat. Commun. 13 7432
[32] Yang Z, Zhang T, Liu K Q, Dang B J, Xu L Y, Yang Y C and Huang R 2023 Adv. Intell. Syst. 5 2300026
[33] Chen Y L, Wang Z W, Chen S, Ren H, Li B W, Yan W S, Zhang G B, Jiang J and Zou C W 2018 Nano Energy 51 300
[34] Yuan R, Duan Q X, Tiw P J, Li G, Xiao Z J, Jing Z K, Yang K, Liu C, Ge C, Huang R and Yang Y C 2022 Nat. Commun. 13 3973
[35] Yuan R, Tiw P J, Cai L, Yang Z Y, Liu C, Zhang T, Ge C, Huang R and Yang Y C 2023 Nat. Commun. 14 3695
[36] Deng S B, Yu H M, Park T J, Islam A N, Manna S, Pofelski A, Wang Q, Zhu Y M, Sankaranarayanan S, Sengupta A and Ramanathan S 2023 Sci. Adv. 9 4838
[1] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[2] Spin torque oscillator based on magnetic tunnel junction with MgO cap layer for radio-frequency-oriented neuromorphic computing
Huayao Tu(涂华垚), Yanxiang Luo(雒雁翔), Kexin Zeng(曾柯心), Yuxuan Wu(吴宇轩), Like Zhang(张黎可), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(10): 107504.
[3] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[4] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[5] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[6] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[7] A novel low-loss four-bit bandpass filter using RF MEMS switches
Lulu Han(韩路路), Yu Wang(王宇), Qiannan Wu(吴倩楠), Shiyi Zhang(张世义), Shanshan Wang(王姗姗), and Mengwei Li(李孟委). Chin. Phys. B, 2022, 31(1): 018506.
[8] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[9] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[10] Silicon-based optoelectronic synaptic devices
Lei Yin(尹蕾), Xiaodong Pi(皮孝东), Deren Yang(杨德仁). Chin. Phys. B, 2020, 29(7): 070703.
[11] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[12] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[13] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[14] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[15] Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors
Siqi Hu(胡思奇), Ruijuan Tian(田睿娟), Xiaoguang Luo(罗小光), Rui Yin(殷瑞), Yingchun Cheng(程迎春), Jianlin Zhao(赵建林), Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛). Chin. Phys. B, 2018, 27(12): 128502.
No Suggested Reading articles found!