Special Issue:
SPECIAL TOPIC—Post-Moore era: Materials and device physics
|
SPECIAL TOPIC—Post-Moore era: Materials and device physics |
Prev
Next
|
|
|
Reconfigurable Mott electronics for homogeneous neuromorphic platform |
Zhen Yang(杨振)1, Ying-Ming Lu(路英明)1, and Yu-Chao Yang(杨玉超)1,2,3,4,† |
1 Beijing Advanced Innovation Center for Integrated Circuit, School of Integrated Circuits, Peking University, Beijing 100871, China; 2 School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China; 3 Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China; 4 Center for Brain Inspired Intelligence, Chinese Institute for Brain Research(CIBR), Beijing 102206, China |
|
|
Abstract To simplify the fabrication process and increase the versatility of neuromorphic systems, the reconfiguration concept has attracted much attention. Here, we developed a novel electrochemical VO2 (EC-VO2) device, which can be reconfigured as synapses or LIF neurons. The ionic dynamic doping contributed to the resistance changes of VO2, which enables the reversible modulation of device states. The analog resistance switching and tunable LIF functions were both measured based on the same device to demonstrate the capacity of reconfiguration. Based on the reconfigurable EC-VO2, the simulated spiking neural network model exhibited excellent performances by using low-precision weights and tunable output neurons, whose final accuracy reached 91.92%.
|
Received: 05 August 2023
Revised: 28 September 2023
Accepted manuscript online: 13 October 2023
|
PACS:
|
84.30.-r
|
(Electronic circuits)
|
|
85.40.-e
|
(Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)
|
|
87.85.dq
|
(Neural networks)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.61925401, 92064004, 61927901, and 92164302) and the 111 Project (Grant No.B18001). Y. Y. acknowledges support from the Fok Ying-Tong Education Foundation and the Tencent Foundation through the XPLORER PRIZE. The authors acknowledge the support of TOF-SIMS characterization by Dr. Tinglu Song and the first-principal computation by Dr. Bing Zheng from Beijing Institute of Technology. |
Corresponding Authors:
Yu-Chao Yang
E-mail: yuchaoyang@pku.edu.cn
|
Cite this article:
Zhen Yang(杨振), Ying-Ming Lu(路英明), and Yu-Chao Yang(杨玉超) Reconfigurable Mott electronics for homogeneous neuromorphic platform 2023 Chin. Phys. B 32 128401
|
[1] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436 [2] Mankowitz D J, Michi A, Zhernov A, et al. 2023 Nature 618 257 [3] Yu S 2018 Proc. IEEE 106 260 [4] Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668 [5] Zidan M A, Strachan J P and Lu W D 2018 Nat. Electron. 1 22 [6] Huang X H, Liu C S, Jiang Y G and Zhou P 2020 Chin. Phys. B 29 078504 [7] Sebastian A, Gallo M L, Aljameh R K and Eleftheriou E 2020 Nat. Nanotechnol. 15 529 [8] Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J and Qian H 2020 Nature 577 641 [9] Duan Q X, Jing Z K, Zou X L, Wang Y H, Yang K, Zhang T, Wu S, Huang R and Yang Y C 2020 Nat. Commun. 11 3399 [10] Liu K Q, Zhang T, Dang B J, Bao L, Xu L Y, Cheng C D, Yang Z, Huang R and Yang Y C 2022 Nat. Electron. 5 761 [11] Marković D, Mizrahi A, Querlioz D and Grollier J 2020 Nat. Rev. Phys. 2 499 [12] Liu R, He Y L, Jiang S S, Zhu L, Chen C S, Zhu Y and Wan Q 2021 Chin. Phys. B 30 058102 [13] Wang X, Ge C, Li G, Guo E J, He M, Wang C, Yang G Z and Jin K J 2020 Chin. Phys. B 29 098101 [14] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80 [15] Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L, Xia Q F and Yang J J 2020 Nat. Rev. Mater. 5 173 [16] Kumar S, Wang X X, Strachan J P, Yang Y C and Lu W D 2022 Nat. Rev. Mater. 7 575 [17] Zhang X M, Zhuo Y, Luo Q, Wu Z H, Midya R, Wang Z R, Song W H, Wang R, Upadhyay N K, Fang Y L, Kiani F, Rao M Y, Yang Y, Xia Q F, Liu Q, Liu M and Yang J J 2020 Nat. Commun. 11 51 [18] Prezioso M, Mahmoodi M R, Bayat F M, Nili H, Kim H, Vincent A and Strukov D B 2018 Nat. Commun. 9 5311 [19] Zhang X M, Wang W, Liu Q, Zhao X L, Wei J S, Cao R R, Yao Z H, Zhu X L, Zhang F, Lv H B, Long S B and Liu M 2018 IEEE Electron Dev. Lett. 39 308 [20] Dev D, Krishnaprasad A, Shawkat M S, He Z Z, Das S, Fan D L, Chung H S, Jung Y and Roy T 2021 Chin. Phys. B 30 058702 [22] Li W H, Lan X K, Liu X H, Zhang E Z, Deng Y C and Wang K Y 2022 Chin. Phys. B 31 117106 [23] Lin X H, Long H T, Ke S, Wang Y Y, Zhu Y, Chen C S, Wan C J and Wan Q 2022 Chin. Phys. Lett. 39 068501 [24] Zhao Y H, Liu B, Yang J L, He J and Jiang J 2020 Chin. Phys. Lett. 37 088501 [25] Zhou H J, Li Y and Miao X S 2022 Sci. China Inf. Sci. 65 122410 [26] Cheng C D, Tiw P J, Cai Y M, Yan X Q, Yang Y C and Huang R 2021 Sci. China Inf. Sci. 64 221402 [27] Zhu Y, He Y L, Chen C S, Zhu L, Wan C J and Wan Q 2022 Sci. China Inf. Sci. 65 162401 [28] Wang Z R, Joshi S, Yang J J, et al. 2018 Nat. Electron. 1 137 [29] Zhang H T, Park T J, Ramanathan S, et al. 2022 Science 375 533 [30] Fu Y Y, Zhou Y, Huang X D, Dong B Y, Zhuge F W, Li Y, He Y L, Chai Y and Miao X S 2022 Adv. Funct. Mater. 32 2111996 [31] Wang T Y, Meng J L, Zhou X F, Liu Y, He Z Y, Han Q, Li Q X, Yu J J, Li Z H, Liu Y K, Zhu H, Sun Q Q, Zhang D W, Chen P N, Peng H S and Chen L 2022 Nat. Commun. 13 7432 [32] Yang Z, Zhang T, Liu K Q, Dang B J, Xu L Y, Yang Y C and Huang R 2023 Adv. Intell. Syst. 5 2300026 [33] Chen Y L, Wang Z W, Chen S, Ren H, Li B W, Yan W S, Zhang G B, Jiang J and Zou C W 2018 Nano Energy 51 300 [34] Yuan R, Duan Q X, Tiw P J, Li G, Xiao Z J, Jing Z K, Yang K, Liu C, Ge C, Huang R and Yang Y C 2022 Nat. Commun. 13 3973 [35] Yuan R, Tiw P J, Cai L, Yang Z Y, Liu C, Zhang T, Ge C, Huang R and Yang Y C 2023 Nat. Commun. 14 3695 [36] Deng S B, Yu H M, Park T J, Islam A N, Manna S, Pofelski A, Wang Q, Zhu Y M, Sankaranarayanan S, Sengupta A and Ramanathan S 2023 Sci. Adv. 9 4838 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|