Special Issue:
SPECIAL TOPIC — Physics in neuromorphic devices
|
TOPICAL REVIEW—Physics in neuromorphic devices |
Prev
Next
|
|
|
Optoelectronic memristor for neuromorphic computing |
Wuhong Xue(薛武红)1,2, Wenjuan Ci(次文娟)1, Xiao-Hong Xu(许小红)1, Gang Liu(刘钢)2,3 |
1 Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China; 2 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 3 College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract With the need of the internet of things, big data, and artificial intelligence, creating new computing architecture is greatly desired for handling data-intensive tasks. Human brain can simultaneously process and store information, which would reduce the power consumption while improve the efficiency of computing. Therefore, the development of brain-like intelligent device and the construction of brain-like computation are important breakthroughs in the field of artificial intelligence. Memristor, as the fourth fundamental circuit element, is an ideal synaptic simulator due to its integration of storage and processing characteristics, and very similar activities and the working mechanism to synapses among neurons which are the most numerous components of the brains. In particular, memristive synaptic devices with optoelectronic responding capability have the benefits of storing and processing transmitted optical signals with wide bandwidth, ultrafast data operation speed, low power consumption, and low cross-talk, which is important for building efficient brain-like computing networks. Herein, we review recent progresses in optoelectronic memristor for neuromorphic computing, including the optoelectronic memristive materials, working principles, applications, as well as the current challenges and the future development of the optoelectronic memristor.
|
Received: 08 January 2020
Revised: 05 February 2020
Accepted manuscript online:
|
PACS:
|
84.37.+q
|
(Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))
|
|
87.19.lw
|
(Plasticity)
|
|
87.19.lv
|
(Learning and memory)
|
|
84.35.+i
|
(Neural networks)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0405600), the National Natural Science Foundation of China (Grant Nos. 61674153, 61722407, 61974090, and 61904099), and the Natural Science Foundation of Shanghai, China (Grant No. 19ZR1474500). |
Corresponding Authors:
Xiao-Hong Xu, Gang Liu
E-mail: xuxh@sxnu.edu.cn;gang.liu@sjtu.edu.cn
|
Cite this article:
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢) Optoelectronic memristor for neuromorphic computing 2020 Chin. Phys. B 29 048401
|
[1] |
Waldrop M M 2016 Nature 530 144
|
[2] |
Hasegawa T, Terabe K, Tsuruoka T and Aono M 2012 Adv. Mater. 24 252
|
[3] |
Lee J and Lu W D 2018 Adv. Mater. 30 1702770
|
[4] |
Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y, Gao B, Qian H, Bi G, Song S, Yang J J and Wu H 2019 Adv. Mater. 31 1902761
|
[5] |
Chua L 1971 IEEE Trans. Circuit Theory 18 507
|
[6] |
Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
|
[7] |
Zhao X, Xu H, Wang Z, Lin Y and Liu Y 2019 InfoMat 1 183
|
[8] |
Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
|
[9] |
Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C and Zhu X J 2012 Adv. Func. Mater. 22 2759
|
[10] |
Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
|
[11] |
Chen J Y, Hsin C L, Huang C W, Chiu C H, Huang Y T, Lin S J, Wu W W and Chen L J 2013 Nano Lett. 13 3671
|
[12] |
Yang J J, Borghetti J, Murphy D, Stewart D R and Williams R S 2009 Adv. Mater. 21 3754
|
[13] |
Yao P, Wu H, Gao B, Eryilmaz S B, Huang X, Zhang W, Zhang Q, Deng N, Shi L, Wong H P and Qian H 2017 Nat. Commun. 8 15199
|
[14] |
Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J and Li R W 2019 ACS Nano 13 2634
|
[15] |
Chen S, Lou Z, Chen D and Shen G 2018 Adv. Mater. 30 1705400
|
[16] |
Lee G J, Choi C, Kim D H and Song Y M 2017 Adv. Funct. Mater. 28 1705202
|
[17] |
Tan H, Liu G, Zhu X, Yang H, Chen B, Chen X, Shang J, Lu W D, Wu Y and Li R W 2015 Adv. Mater. 27 2797
|
[18] |
Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y and Li R W 2017 ACS Nano 11 11298
|
[19] |
Chen G, Song C, Chen C, Gao S, Zeng F and Pan F 2012 Adv. Mater. 24 3515
|
[20] |
Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
|
[21] |
You T, Du N, Slesazeck S, Mikolajick T, Li G, Burger D, Skorupa I, Stocker H, Abendroth B, Beyer A, Volz K, Schmidt O G and Schmidt H 2014 ACS Appl. Mater. Interfaces 6 19758
|
[22] |
Davis C B, Allred D D, Reyes-Mena A, González-Hernández J, González O, Hess B C and Allred W P 1993 Phys. Rev. B 47 13363
|
[23] |
Dang X Z, Wang C D, Yu E T, Boutros K S and Redwing J M 1998 Appl. Phys. Lett. 72 2745
|
[24] |
Skorodumova N V, Simak S I, Lundqvist B I, Abrikosov I A and Johansson B 2002 Phys. Rev. Lett. 89 166601
|
[25] |
Nesheva D, Levi Z, Aneva Z, Nikolova V and Hofmeister H 2000 J. Phys.: Condens. Matter. 12 751
|
[26] |
Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H P and Chai Y 2019 Nat. Nanotechnol. 14 776
|
[27] |
Cai S Y, Tzou C Y, Liou Y R, Chen D R, Jiang C Y, Ma J M, Chang C Y, Tseng C Y, Liao Y M, Hsieh Y P, Hofmann M and Chen Y F 2019 ACS Appl. Mater. Interfaces 11 4649
|
[28] |
Yang C S, Shang D S, Liu N, Fuller E J, Agrawal S, Talin A A, Li Y Q, Shen B G and Sun Y 2018 Adv. Funct. Mater. 28 1804170
|
[29] |
Karbalaei Akbari M and Zhuiykov S 2019 Nat. Commun. 10 3873
|
[30] |
Zhao X, Wang Z, Xie Y, Xu H, Zhu J, Zhang X, Liu W, Yang G, Ma J and Liu Y 2018 Small 14 1801325
|
[31] |
Kumar M, Kim H S and Kim J 2019 Adv. Mater. 31 1900021
|
[32] |
Ren Y, Hu L, Mao J Y, Yuan J, Zeng Y J, Ruan S, Yang J Q, Zhou L, Zhou Y and Han S T 2018 J. Mater. Chem. C 6 9383
|
[33] |
Alquraishi W, Fu Y, Qiu W, Wang J, Chen Y, Kong L A, Sun J and Gao Y 2019 Org. Electron. 71 72
|
[34] |
Fan L, Chen Y, Liu Q, Chen S, Zhu L, Meng Q, Wang B, Zhang Q, Ren H and Zou C 2016 ACS Appl. Mater. Interfaces 8 32971
|
[35] |
Wu Q, Wang J, Cao J, Lu C, Yang G, Shi X, Chuai X, Gong Y, Su Y, Zhao Y, Lu N, Geng D, Wang H, Li L and Liu M 2018 Adv. Electron. Mater. 4 1800556
|
[36] |
Li H K, Chen T P, Liu P, Hu S G, Liu Y, Zhang Q and Lee P S 2016 J. Appl. Phys. 119 244505
|
[37] |
Wu Y, Wei Y, Huang Y, Cao F, Yu D, Li X and Zeng H 2017 Nano Res. 10 1584
|
[38] |
Chen Y, Liu G, Wang C, Zhang W, Li R W and Wang L 2014 Mater. Horiz. 1 489
|
[39] |
Liu G, Wang C, Zhang W, Pan L, Zhang C, Yang X, Fan F, Chen Y and Li R W 2016 Adv. Electron. Mater. 2 1500298
|
[40] |
Fang L, Dai S, Zhao Y, Liu D and Huang J 2019 Adv. Electron. Mater. 1901217
|
[41] |
Nau S, Wolf C, Sax S and List-Kratochvil E J 2015 Adv. Mater. 27 1048
|
[42] |
Zhang L, Pasthukova N, Yao Y, Zhong X, Pavlica E, Bratina G, Orgiu E and Samori P 2018 Adv. Mater. 30 1801181
|
[43] |
Jaafar A H, Gray R J, Verrelli E, O'Neill M, Kelly S M and Kemp N T 2017 Nanoscale 9 17091
|
[44] |
Sun Y, Tai M, Song C, Wang Z, Yin J, Li F, Wu H, Zeng F, Lin H and Pan F 2018 J. Phys. Chem. C 122 6431
|
[45] |
Choi J, Le Q V, Hong K, Moon C W, Han J S, Kwon K C, Cha P R, Kwon Y, Kim S Y and Jang H W 2017 ACS Appl. Mater. Interfaces 9 30764
|
[46] |
Gu C and Lee J S 2016 ACS Nano 10 5413
|
[47] |
Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y and Park N G 2017 Nature 550 87
|
[48] |
Kim D J, Tak Y J, Kim W G, Kim J K, Kim J H and Kim H J 2017 Adv. Mater. Interfaces 4 1601035
|
[49] |
Zhu X, Lee J and Lu W D 2017 Adv. Mater. 29 1700527
|
[50] |
Zhu X and Lu W D 2018 ACS Nano 12 1242
|
[51] |
Ham S, Choi S, Cho H, Na S I and Wang G 2019 Adv. Funct. Mater. 29 1806646
|
[52] |
Zhou F, Liu Y, Shen X, Wang M, Yuan F and Chai Y 2018 Adv. Funct. Mater. 28 1800080
|
[53] |
Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A and Samorí P 2018 Chem. Soc. Rev. 47 4860
|
[54] |
He Q, Wu S, Yin Z and Zhang H 2012 Chem. Sci. 3 1764
|
[55] |
Wu S, He Q, Tan C, Wang Y and Zhang H 2013 Small 9 1160
|
[56] |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
|
[57] |
Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S and Bao Q 2015 ACS Nano 9 1886
|
[58] |
Yan F, Wei Z, Wei X, Lv Q, Zhu W and Wang K 2018 Small Methods 2 1700349
|
[59] |
Huo N and Konstantatos G 2018 Adv. Mater. 30 1801164
|
[60] |
Liu C, Yan X, Song X, Ding S, Zhang D W and Zhou P 2018 Nat. Nanotech. 13 404
|
[61] |
Wu X, Ge R, Chen P A, Chou H, Zhang Z, Zhang Y, Banerjee S, Chiang M H, Lee J C and Akinwande D 2019 Adv. Mater. 31 1806790
|
[62] |
Wang M, Cai S, Pan C, Wang C, Lian X, Zhuo Y, Xu K, Cao T, Pan X, Wang B, Liang S J, Yang J J, Wang P and Miao F 2018 Nat. Electron. 1 130
|
[63] |
Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H P and Park J H 2018 Nat. Commun. 9 5106
|
[64] |
Ni Z, Wang Y, Liu L, Zhao S, Xu Y, Pi X and Yang D 2018 IEDM 2018 IEEE Int. 18-887
|
[65] |
Wang W, Panin G N, Fu X, Zhang L, Ilanchezhiyan P, Pelenovich V O, Fu D and Kang T W 2016 Sci. Rep. 6 31224
|
[66] |
Campbell K A, Bassine R A, Kabir M F and Astle J 2018 ACS Appl. Electron. Mater. 1 96
|
[67] |
Lipatov A, Sharma P, Gruverman A and Sinitskii A 2015 ACS Nano 9 8089
|
[68] |
He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y and Guo X 2018 Small 14 1800079
|
[69] |
Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H and Lee Y H 2019 Adv. Mater. 31 1807075
|
[70] |
Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S and Kim J M 2017 Nat. Commun. 8 14734
|
[71] |
Lee D, Hwang E, Lee Y, Choi Y, Kim J S, Lee S and Cho J H 2016 Adv. Mater. 28 9196
|
[72] |
Qin S Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y and Wang X 2017 2D Mater. 4 035022
|
[73] |
Xiang D, Liu T, Xu J, Tan J Y, Hu Z, Lei B, Zheng Y, Wu J, Neto A H C, Liu L and Chen W 2018 Nat. Commun. 9 2966
|
[74] |
Maier P, Hartmann F, Emmerling M, Schneider C, Kamp M, Höfling S and Worschech L 2016 Phys. Rev. Appl. 5 054011
|
[75] |
Maier P, Hartmann F, Rebello Sousa Dias M, Emmerling M, Schneider C, Castelano L K, Kamp M, Marques G E, Lopez-Richard V, Worschech L and Höfling S 2016 Appl. Phys. Lett. 109 023501
|
[76] |
Wang Y, Lv Z, Liao Q, Shan H, Chen J, Zhou Y, Zhou L, Chen X, Roy V A L, Wang Z, Xu Z, Zeng Y J and Han S T 2018 Adv. Mater. 30 1800327
|
[77] |
Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
|
[78] |
Jeong D S, Schroeder H and Waser R 2009 Phys. Rev. B 79 195317
|
[79] |
Kalsbeck W A and Holden Thorp H 1991 J. Efectroanal. Chem. 314 363
|
[80] |
Kumar M, Abbas S and Kim J 2018 ACS Appl. Mater. Interfaces 10 34370
|
[81] |
Zhai Y, Yang X, Wang F, Li Z, Ding G, Qiu Z, Wang Y, Zhou Y and Han S T 2018 Adv. Mater. 30 1803563
|
[82] |
Bandara H M and Burdette S C 2012 Chem. Soc. Rev. 41 1809
|
[83] |
Tanaka K and Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer) p. 185
|
[84] |
Yager K G, Tanchak O M, Godbout C, Fritzsche H and Barrett C J 2006 Macromolecules 39 9311
|
[85] |
Ling H, Tan K, Fang Q, Xu X, Chen H, Li W, Liu Y, Wang L, Yi M, Huang R Qian Y, Xie L and Huang W 2017 Adv. Electron. Mater. 3 1600416
|
[86] |
Qiu H, Zhao Y, Liu Z, Herder M, Hecht S and Samori P 2019 Adv. Mater. 31 1903402
|
[87] |
deQuilettes D W, Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulovic V, Snaith H J, Ginger D S and Stranks S D 2016 Nat. Commun. 7 11683
|
[88] |
Wang Y, Yang J, Wang Z, Chen J, Yang Q, Lv Z, Zhou Y, Zhai Y, Li Z and Han S T 2019 Small 15 1805431
|
[89] |
Zhou Y, Yew K S, Ang D S, Kawashima T, Bera M K, Zhang H Z and Bersuker G 2015 Appl. Phys. Lett. 107 072107
|
[90] |
Kawashima T, Zhou Y, Yew K S and Ang D S 2017 Appl. Phys. Lett. 111 113505
|
[91] |
Emboras A, Niegemann J, Ma P, Haffner C, Pedersen A, Luisier M, Hafner C, Schimmel T and Leuthold J 2016 Nano Lett. 16 709
|
[92] |
Emboras A, Goykhman I, Desiatov B, Mazurski N, Stern L, Shappir J and Levy U 2013 Nano Lett. 13 6151
|
[93] |
Yao J N, Loo B H, Hashimoto K and Fujishima A 1990 J. Electroanal. Chem. 290 263
|
[94] |
Wang S, Fan W, Liu Z, Yu A and Jiang X 2018 J. Mater. Chem. C 6 191
|
[95] |
Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L and Liu M 2012 Adv. Mater. 24 1844
|
[96] |
Tsuruoka T, Valov I, Tappertzhofen S, van den Hurk J, Hasegawa T, Waser R and Aono M 2015 Adv. Funct. Mater. 25 6374
|
[97] |
Xiao Z and Huang J 2016 Adv. Electron. Mater. 2 1600100
|
[98] |
Yizhar O, Fenno L E, Davidson T J, Mogri M and Deisseroth K 2011 Neuron 71 9
|
[99] |
Wang Y, Yang J, Ye W, She D, Chen J, Lv Z, Roy V A L, Li H, Zhou K, Yang Q, Zhou Y and Han S T 2019 Adv. Electron. Mater. 1900765
|
[100] |
Shao L, Wang H, Yang Y, He Y, Tang Y, Fang H, Zhao J, Xiao H, Liang K, Wei M, Xu W, Luo M, Wan Q, Hu W, Gao T and Cui Z 2019 ACS Appl. Mater. Interfaces 11 12161
|
[101] |
Wang G, Wang R, Kong W and Zhang J 2018 Analysis. Cogn. Neurodyn. 12 615
|
[102] |
Zhou F, Chen J, Tao X, Wang, X and Chai Y 2019 Research 2019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|