Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070703    DOI: 10.1088/1674-1056/ab973f
Special Issue: SPECIAL TOPIC — Physics in neuromorphic devices
TOPICAL REVIEW—Physics in neuromorphic devices Prev   Next  

Silicon-based optoelectronic synaptic devices

Lei Yin(尹蕾), Xiaodong Pi(皮孝东), Deren Yang(杨德仁)
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  High-performance neuromorphic computing (i.e., brain-like computing) is envisioned to seriously demand optoelectronically integrated artificial neural networks (ANNs) in the future. Optoelectronic synaptic devices are critical building blocks for optoelectronically integrated ANNs. For the large-scale deployment of high-performance neuromorphic computing in the future, it would be advantageous to fabricate optoelectronic synaptic devices by using advanced silicon (Si) technologies. This calls for the development of Si-based optoelectronic synaptic devices. In this work we review the use of Si materials to make optoelectronic synaptic devices, which have either two-terminal or three-terminal structures. A series of important synaptic functionalities have been well mimicked by using these Si-based optoelectronic synaptic devices. We also present the outlook of using Si materials for optoelectronic synaptic devices.
Keywords:  silicon      optoelectronic synaptic devices      neuromorphic computing  
Received:  02 April 2020      Revised:  25 May 2020      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0205704 and 2018YFB2200101), the National Natural Science Foundation of China (Grant Nos. 91964107 and 61774133), the Fundamental Research Funds for the Central Universities, China (Grant No. 2018XZZX003-02), the National Natural Science Foundation of China for Innovative Research Groups (Grant No. 61721005), and the Zhejiang University Education Foundation Global Partnership Fund.
Corresponding Authors:  Xiaodong Pi, Deren Yang     E-mail:;

Cite this article: 

Lei Yin(尹蕾), Xiaodong Pi(皮孝东), Deren Yang(杨德仁) Silicon-based optoelectronic synaptic devices 2020 Chin. Phys. B 29 070703

[1] Waldrop M M 2012 Nature 482 456
[2] Zidan M A, Strachan J P and Lu W D 2018 Nat. Electron. 1 22
[3] Bear M F, Connors B W and Paradiso M A 2007 Neuroscience: Exploring the Brain, Enhanced Edition Vol. 2 (Jones & Bartlett Learning, LLC)
[4] Drachman D A 2005 Neurology 64 2004
[5] Abbott L F and Regehr W G 2004 Nature 431 796
[6] Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y, Datta P, Nam G J, Taba B, Beakes M, Brezzo B, Kuang J B, Manohar R, Risk W P, Jackson B and Modha D S 2015 IEEE Trans. Comput. Des. Integr. Circuits Syst. 34 1537
[7] Poon C S and Zhou K 2011 Front. Neurosci. 5 2009
[8] Chicca E, Stefanini F, Bartolozzi C and Indiveri G 2014 Proc. IEEE 102 1367
[9] Rahimi Azghadi M, Iannella N, Al-Sarawi S F, Indiveri G and Abbott D 2014 Proc. IEEE 102 717
[10] Indiveri G, Chicca E and Douglas R 2006 IEEE Trans. Neural Networks 17 211
[11] Wijekoon J H B and Dudek P 2008 Neural Networks 21 524
[12] Rahimi Azghadi M, Al-Sarawi S, Abbott D and Iannella N 2013 Neural Networks 45 70
[13] Kuzum D, Yu S and Philip Wong H S 2013 Nanotechnology 24 382001
[14] Kim C H, Lim S, Woo S Y, Kang W M, Seo Y T, Lee S T, Lee S, Kwon D, Oh S, Noh Y, Kim H, Kim J, Bae J H and Lee J H 2019 Nanotechnology 30 032001
[15] Islam R, Li H, Chen P Y, Wan W, Chen H Y, Gao B, Wu H, Yu S, Saraswat K and Philip Wong H S 2019 J. Phys. D: Appl. Phys. 52 113001
[16] Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y, Gao B, Qian H, Bi G, Song S, Yang J J and Wu H 2019 Adv. Mater. 31 1902761
[17] Tian H, Zhao L, Wang X, Yeh Y W, Yao N, Rand B P and Ren T L 2017 ACS Nano 11 12247
[18] Yan X B, Zhao J H, Liu S, Zhou Z Y, Liu Q, Chen J S and Liu X Y 2018 Adv. Funct. Mater. 28 1
[19] Hu L, Fu S, Chen Y, Cao H, Liang L, Zhang H, Gao J, Wang J and Zhuge F 2017 Adv. Mater. 29 1606927
[20] Benner A F, Ignatowski M, Kash J A, Kuchta D M and Ritter M B 2005 IBM J. Res. Dev. 49 755
[21] Wang Z, Zhang S, Zhou L, Mao J, Han S, Ren Y, Yang J, Wang Y, Zhai Y and Zhou Y 2019 Phys. Status Solidi-Rapid Res. Lett. 13 1800644
[22] Han H, Yu H, Wei H, Gong J and Xu W 2019 Small 15 1900695
[23] Lee M, Lee W, Choi S, Jo J W, Kim J, Park S K and Kim Y H 2017 Adv. Mater. 29 1700951
[24] John R A, Liu F, Chien N A, Kulkarni M R, Zhu C, Fu Q, Basu A, Liu Z and Mathews N 2018 Adv. Mater. 30 e1800220
[25] Ham S, Choi S, Cho H, Na S I and Wang G 2019 Adv. Funct. Mater. 29 1806646
[26] Kumar M, Kim H S and Kim J 2019 Adv. Mater. 31 1900021
[27] Sun F, Lu Q, Liu L, Li L, Wang Y, Hao M, Cao Z, Wang Z, Wang S, Li T and Zhang T 2020 Adv. Mater. Technol. 5 1900888
[28] Yu J J, Liang L Y, Hu L X, Duan H X, Wu W H, Zhang H L, Gao J H, Zhuge F, Chang T C and Cao H T 2019 Nano Energy 62 772
[29] He W, Fang Y, Yang H, Wu X, He L, Chen H and Guo T 2019 J. Mater. Chem. C 7 12523
[30] Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H S P and Park J H 2018 Nat. Commun. 9 5106
[31] Zhao L, Fan Z, Cheng S, Hong L, Li Y, Tian G, Chen D, Hou Z, Qin M, Zeng M, Lu X, Zhou G, Gao X and Liu J 2020 Adv. Electron. Mater. 6 1900858
[32] Hu D C, Yang R, Jiang L and Guo X 2018 ACS Appl. Mater. Interfaces 10 6463
[33] Li H K, Chen T P, Liu P, Hu S G, Liu Y, Zhang Q and Lee P S 2016 J. Appl. Phys. 119 244505
[34] Duan N, Li Y, Chiang H C, Chen J, Pan W Q, Zhou Y X, Chien Y C, He Y H, Xue K H, Liu G, Chang T C and Miao X S 2019 Nanoscale 11 17590
[35] Kumar M, Abbas S and Kim J 2018 ACS Appl. Mater. Interfaces 10 34370
[36] Guo Y B, Zhu L Q, Gao W T, Ren Z Y, Xiao H and Ge Z Y 2019 Org. Electron. 71 31
[37] Peng C, Jiang W, Li Y, Li X and Zhang J 2019 ACS Appl. Electron. Mater. 1 2406
[38] Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J and Li R W 2019 ACS Nano 13 2634
[39] Pilarczyk K, Podborska A, Lis M, Kawa M, Migdal D and Szaciłowski K 2016 Adv. Electron. Mater. 2 1500471
[40] Liu Z, Dai S, Wang Y, Yang B, Hao D, Liu D, Zhao Y, Fang L, Ou Q, Jin S, Zhao J and Huang J 2020 Adv. Funct. Mater. 30 1906335
[41] Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X and Zhang R 2016 2D Mater. 4 035022
[42] Shao L, Wang H, Yang Y, He Y, Tang Y, Fang H, Zhao J, Xiao H, Liang K, Wei M, Xu W, Luo M, Wan Q, Hu W, Gao T and Cui Z 2019 ACS Appl. Mater. Interfaces 11 12161
[43] Zhu X and Lu W D 2018 ACS Nano 12 1242
[44] Qian L, Sun Y, Wu M, Li C, Xie D, Ding L and Shi G 2018 Nanoscale 10 6837
[45] Sun Y, Qian L, Xie D, Lin Y, Sun M, Li W, Ding L, Ren T and Palacios T 2019 Adv. Funct. Mater. 29 1902538
[46] Tian H, Wang X, Wu F, Yang Y and Ren T L 2018 2018 IEEE International Electron Devices Meeting (IEDM) vol. 2018-Decem (IEEE) pp. 38.6.1-38.6.4
[47] Wang Y, Lv Z, Chen J, Wang Z, Zhou Y, Zhou L, Chen X and Han S T 2018 Adv. Mater. 30 1802883
[48] Wang K, Dai S, Zhao Y, Wang Y, Liu C and Huang J 2019 Small 15 1900010
[49] John R A, Liu F, Chien N A, Kulkarni M R, Zhu C, Fu Q, Basu A, Liu Z and Mathews N 2018 Adv. Mater. 30 1800220
[50] Wang S, Chen C, Yu Z, He Y, Chen X, Wan Q, Shi Y, Zhang D W, Zhou H, Wang X and Zhou P 2019 Adv. Mater. 31 1806227
[51] Zhou F, Chen J, Tao X, Wang X and Chai Y 2019 Research 2019 9490413
[52] Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A and Alexe M 2020 ACS Nano 14 746
[53] Wang S, Hou X, Liu L, Li J, Shan Y, Wu S, Zhang D W and Zhou P 2019 Research 2019 1618798
[54] Kim S G, Kim S H, Park J, Kim G S, Park J H, Saraswat K C, Kim J and Yu H Y 2019 ACS Nano 13 10294
[55] Zuo F, Panda P, Kotiuga M, Li J, Kang M, Mazzoli C, Zhou H, Barbour A, Wilkins S, Narayanan B, Cherukara M, Zhang Z, Sankaranarayanan S K R S, Comin R, Rabe K M, Roy K and Ramanathan S 2017 Nat. Commun. 8 240
[56] Efros A L, Delehanty J B, Huston A L, Medintz I L, Barbic M and Harris T D 2018 Nat. Nanotechnol. 13 278
[57] Zucker R S and Regehr W G 2002 Annu. Rev. Physiol. 64 355
[58] Ferster D and Jagadeesh B 1992 J. Neurosci. 12 1262
[59] Salin P A, Scanziani M, Malenka R C and Nicoll R A 1996 Proc. Natl. Acad. Sci. USA 93 13304
[60] Lin Y, Zeng T, Xu H, Wang Z, Zhao X, Liu W, Ma J and Liu Y 2018 Adv. Electron. Mater. 4 1800373
[61] Zhou L, Yang S, Ding G, Yang J Q, Ren Y, Zhang S R, Mao J Y, Yang Y, Zhou Y and Han S T 2019 Nano Energy 58 293
[62] Kirkwood A, Dudek S M, Gold J T, Aizenman C D and Bear M F 1993 Science 260 1518
[63] Feldman D E 2012 Neuron 75 556
[64] Xiao Z and Huang J 2016 Adv. Electron. Mater. 2 1600100
[65] Ren Y, Hu L, Mao J Y, Yuan J, Zeng Y J, Ruan S, Yang J Q, Zhou L, Zhou Y and Han S T 2018 J. Mater. Chem. C 6 9383
[66] Citri A and Malenka R C 2008 Neuropsychopharmacology 33 18
[67] Dudek S M and Bear M F 1992 Proc. Natl. Acad. Sci. USA 89 4363
[68] Aizenman C D, Manis P B and Linden D J 1998 Neuron 21 827
[69] Yu F, Zhu L Q, Xiao H, Gao W T and Guo Y B 2018 Adv. Funct. Mater. 28 1804025
[70] Zhao S, Ni Z, Tan H, Wang Y, Jin H, Nie T, Xu M, Pi X and Yang D 2018 Nano Energy 54 383
[71] Zhao S, Wang Y, Huang W, Jin H, Huang P, Wang H, Wang K, Li D, Xu M, Yang D and Pi X 2019 Sci. China Mater. 62 1470
[72] Josberger E E, Deng Y, Sun W, Kautz R and Rolandi M 2014 Adv. Mater. 26 4986
[73] Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H S P and Chai Y 2019 Nat. Nanotechnol. 14 776
[74] Qian C, Oh S, Choi Y, Kim J H, Sun J, Huang H, Yang J, Gao Y, Park J H and Cho J H 2019 Nano Energy 66 104095
[75] Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H and Park J H 2018 Adv. Funct. Mater. 28 1804397
[76] Fang L, Dai S, Zhao Y, Liu D and Huang J 2020 Adv. Electron. Mater. 6 1901217
[77] Boybat I, Le Gallo M, Nandakumar S R, Moraitis T, Parnell T, Tuma T, Rajendran B, Leblebici Y, Sebastian A and Eleftheriou E 1989 International Joint Conference on Neural Networks (IEEE) pp. 457-63 vol. 2
[78] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K and Aono M 2011 Nat. Mater. 10 591
[79] Rietman E A, Frye R C, Wong C C and Kornfeld C D 1989 Appl. Opt. 28 3474
[80] Frye R C, Rietman E A, Wong C C and Chin B L 1989 International Joint Conference on Neural Networks (IEEE) pp. 457-63 vol. 2
[81] Frye R C, Rietman E A and Wong C C 1991 IEEE Trans. Neural Networks 2 110
[82] Rietman E A, Frye R C and Wong C C 1991 Appl. Opt. 30 950
[83] Chen Y, Wei Q, Yin J, Xia Y and Liu Z 2018 Adv. Electron. Mater. 4 1800242
[84] John R A, Yantara N, Ng Y F, Narasimman G, Mosconi E, Meggiolaro D, Kulkarni M R, Gopalakrishnan P K, Nguyen C A, De Angelis F, Mhaisalkar S G, Basu A and Mathews N 2018 Adv. Mater. 30 1805454
[85] He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y and Guo X 2018 Small 14 1800079
[86] Hessel C M, Reid D, Panthani M G, Rasch M R, Goodfellow B W, Wei J, Fujii H, Akhavan V and Korgel B A 2012 Chem. Mater. 24 393
[87] Kortshagen U R, Sankaran R M, Pereira R N, Girshick S L, Wu J J and Aydil E S 2016 Chem. Rev. 116 11061
[88] Clark R J, Aghajamali M, Gonzalez C M, Hadidi L, Islam M A, Javadi M, Mobarok M H, Purkait T K, Robidillo C J T, Sinelnikov R, Thiessen A N, Washington J, Yu H and Veinot J G C 2017 Chem. Mater. 29 80
[89] Sychugov I, Valenta J and Linnros J 2017 Nanotechnology 28 072002
[90] Fujii M, Sugimoto H and Imakita K 2016 Nanotechnology 27 262001
[91] Rocks C, Svrcek V, Velusamy T, Macias-Montero M, Maguire P and Mariotti D 2018 Nano Energy 50 2455
[92] Ray S K, Maikap S, Banerjee W and Das S 2013 J. Phys. D: Appl. Phys. 46 153001
[93] Tan H, Ni Z, Peng W, Du S, Liu X, Zhao S, Li W, Ye Z, Xu M, Xu Y, Pi X and Yang D 2018 Nano Energy 52 422
[94] Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X and Yang D 2017 ACS Nano 11 9854
[95] Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B and Yang D 2016 Adv. Opt. Mater. 4 700
[96] Zhou S, Ni Z, Ding Y, Sugaya M, Pi X and Nozaki T 2016 ACS Photonics 3 415
[97] Kaushal H and Kaddoum G 2016 IEEE Commun. Surv. tutorials 19 57
[98] Kawauchi T, Kano S and Fujii M 2019 ACS Appl. Electron. Mater. 1 2664
[99] Yin L, Han C, Zhang Q, Ni Z, Zhao S, Wang K, Li D, Xu M, Wu H, Pi X and Yang D 2019 Nano Energy 63 103859
[100] Kamp F, Chen Y and Westerhoff H V 1988 Biophys. Chem. 30 113
[101] Sun L, Zhang Y, Hwang G, Jiang J, Kim D, Eshete Y A, Zhao R and Yang H 2018 Nano Lett. 18 3229
[102] Ni Z, Wang Y, Liu L, Zhao S, Xu Y, Pi X and Yang D 2018 IEEE International Electron Devices Meeting (IEDM) (IEEE) pp. 38.5.1-38.5.4
[103] Mead C 1990 Proc. IEEE 78 1629
[104] Merolla P A, Arthur J V., Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668
[105] Davies M, Srinivasa N, Lin T H, Chinya G, Cao Y, Choday S H, Dimou G, Joshi P, Imam N, Jain S, Liao Y, Lin C K, Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse J, Venkataramanan G, Weng Y H, Wild A, Yang Y and Wang H 2018 IEEE Micro 38 82
[106] Wang Z, Joshi S, Savel'ev S, Song W, Midya R, Li Y, Rao M, Yan P, Asapu S, Zhuo Y, Jiang H, Lin P, Li C, Yoon J H, Upadhyay N K, Zhang J, Hu M, Strachan J P, Barnell M, Wu Q, Wu H, Williams R S, Xia Q and Yang J J 2018 Nat. Electron. 1 137
[107] Bayat F M, Prezioso M, Chakrabarti B, Nili H, Kataeva I and Strukov D 2018 Nat. Commun. 9 2331
[108] Farhat N H, Psaltis D, Prata A and Paek E 1985 Appl. Opt. 24 1469
[109] Boyd G D 1987 Appl. Opt. 26 2712
[110] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
[111] Gokmen T, Onen M and Haensch W 2017 Front. Neurosci. 11 1-13
[112] Li C, Wang Z, Rao M, Belkin D, Song W, Jiang H, Yan P, Li Y, Lin P, Hu M, Ge N, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2019 Nat. Mach. Intell. 1 49-57
[113] Burr G W, Shelby R M, Sebastian A, Kim S, Kim S, Sidler S, Virwani K, Ishii M, Narayanan P, Fumarola A, Sanches L L, Boybat I, Le Gallo M, Moon K, Woo J, Hwang H and Leblebici Y 2017 Adv. Phys. X 2 89-124
[114] Kuzum D, Jeyasingh R G D, Yu S and Wong H S P 2012 IEEE Trans. Electron Devices 59 3489
[115] Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z and Jin K J 2019 Adv. Mater. 31 1900379
[116] Chen R J, Franklin N R, Kong J, Cao J, Tombler T W, Zhang Y and Dai H 2001 Appl. Phys. Lett. 79 2258
[117] Zhang X, Jie J, Wang Z, Wu C, Wang L, Peng Q, Yu Y, Jiang P and Xie C 2011 J. Mater. Chem. 21 6736
[118] Han Y, Zheng X, Fu M, Pan D, Li X, Guo Y, Zhao J and Chen Q 2016 Phys. Chem. Chem. Phys. 18 818
[119] Ni Z, Zhou S, Zhao S, Peng W, Yang D and Pi X 2019 Mater. Sci. Eng. R Reports 138 85
[120] Dan Y 2015 Appl. Phys. Lett. 106 053117
[121] Lu A J, Yang X B and Zhang R Q 2009 Solid State Commun. 149 153
[122] Chen F, Ramayya E B, Euaruksakul C, Himpsel F J, Celler G K, Ding B J, Knezevic I and Lagally M G 2010 ACS Nano 4 2466
[123] Wang Z, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z, Wu Q, Barnell M, Li G, Xin H L, Williams R S, Xia Q and Yang J J 2017 Nat. Mater. 16 101
[124] Yang J T, Ge C, Du J Y, Huang H Y, He M, Wang C, Lu H B, Yang G Z and Jin K J 2018 Adv. Mater. 30 1801548
[125] Feng G, Jiang J, Zhao Y, Wang S, Liu B, Yin K, Niu D, Li X, Chen Y, Duan H, Yang J, He J, Gao Y and Wan Q 2020 Adv. Mater. 32 1906171
[126] Mao J Y, Hu L, Zhang S R, Ren Y, Yang J Q, Zhou L, Zeng Y J, Zhou Y and Han S T 2019 J. Mater. Chem. C 7 48
[127] Hu W, Jiang J, Xie D, Liu B, Yang J and He J 2019 J. Mater. Chem. C 7 682
[128] Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158
[129] Wan Q, Sharbati M T, Erickson J R, Du Y and Xiong F 2019 Adv. Mater. Technol. 4 1900037
[130] Zhou Z, Yin B and Michel J 2015 Light Sci. Appl. 4 e358
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[7] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[8] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[9] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[10] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[11] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[12] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[13] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[14] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[15] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
No Suggested Reading articles found!