Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 128501    DOI: 10.1088/1674-1056/acf5d0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Single-flux-quantum-based qubit control with tunable driving strength

Kuang Liu(刘匡)1,2,3, Yifan Wang(王一凡)1,2,4, Bo Ji(季波)1,2,3, Wanpeng Gao(高万鹏)1,2,3, Zhirong Lin(林志荣)1,2,3,†, and Zhen Wang(王镇)1,2,3,4
1 National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences(CAS), Shanghai 200050, China;
2 CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 ShanghaiTech University, Shanghai 201210, China
Abstract  Single-flux-quantum (SFQ) circuits have great potential in building cryogenic quantum-classical interfaces for scaling up superconducting quantum processors. SFQ-based quantum gates have been designed and realized. However, current control schemes are difficult to tune the driving strength to qubits, which restricts the gate length and usually induces leakage to unwanted levels. In this study, we design the scheme and corresponding pulse generator circuit to continuously adjust the driving strength by coupling SFQ pulses with variable intervals. This scheme not only provides a way to adjust the SFQ-based gate length, but also proposes the possibility to tune the driving strength envelope. Simulations show that our scheme can suppress leakage to unwanted levels and reduce the error of SFQ-based Clifford gates by more than an order of magnitude.
Keywords:  superconducting qubit      qubit control      single-flux-quantum (SFQ) circuit  
Received:  25 May 2023      Revised:  31 August 2023      Accepted manuscript online:  01 September 2023
PACS:  85.25.Cp (Josephson devices)  
  85.25.-j (Superconducting devices)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No.92065116), the Key-Area Research and Development Program of Guangdong Province, China (Grant No.2020B0303030002), the Shanghai Technology Innovation Action Plan Integrated Circuit Technology Support Program (Grant No.22DZ1100200), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA18000000). We thank Dr. Jie Ren, from Shanghai Institute of Microsystem and Information Technology (SIMIT), CAS, for providing SFQ design infrastructure.
Corresponding Authors:  Zhirong Lin     E-mail:  zrlin@mail.sim.ac.cn

Cite this article: 

Kuang Liu(刘匡), Yifan Wang(王一凡), Bo Ji(季波), Wanpeng Gao(高万鹏), Zhirong Lin(林志荣), and Zhen Wang(王镇) Single-flux-quantum-based qubit control with tunable driving strength 2023 Chin. Phys. B 32 128501

[1] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[2] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A, et al. 2019 Nature 574 505
[3] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, et al. 2021 Science 372 948
[4] Lecocq F, Quinlan F, Cicak K, Aumentado J, Diddams S and Teufel J 2021 Nature 591 575
[5] Pauka S, Das K, Kalra R, Moini A, Yang Y, Trainer M, Bousquet A, Cantaloube C, Dick N, Gardner G, et al. 2021 Nat. Electron. 4 64
[6] Mehrpoo M, Patra B, Gong J, van Dijk J, Homulle H, Kiene G, Vladimirescu A, Sebastiano F, Charbon E and Babaie M 2019 IEEE International Symposium on Circuits and Systems (ISCAS) pp. 1--5
[7] McDermott R, Vavilov M, Plourde B, Wilhelm F, Liebermann P, Mukhanov O and Ohki T 2018 Quantum Science and Technology 3 024004
[8] Mukhanov O, Kirichenko A, Howington C, Walter J, Hutchings M, Vernik I, Yohannes D, Dodge K, Ballard A, Plourde B L T, Opremcak A, Liu C H and McDermott R 2019 IEEE International Electron Devices Meeting (IEDM) pp. 31.2.1--31.2.4
[9] Likharev K K and Semenov V K 1991 IEEE Trans. Appl. Supercond. 1 3
[10] Jokar M R, Rines R, Pasandi G, Cong H, Holmes A, Shi Y, Pedram M and Chong F T 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) pp. 400--414
[11] McDermott R and Vavilov M G 2014 Phys. Rev. Appl. 2 014007
[12] Wang Y, Gao W, Liu K, Ji B, Wang Z and Lin Z 2023 Phys. Rev. Appl. 19 044031
[13] Jokar M R, Rines R and Chong F T 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) pp. 402--412
[14] Leonard E, Beck M A, Nelson J, Christensen B, Thorbeck T, Howington C, Opremcak A, Pechenezhskiy I, Dodge K, Dupuis N, Hutchings M, Ku J, Schlenker F, Suttle J, Wilen C, Zhu S, Vavilov M, Plourde B and McDermott R 2019 Phys. Rev. Appl. 11 014009
[15] Howe L, Castellanos-Beltran M A, Sirois A J, Olaya D, Biesecker J, Dresselhaus P D, Benz S P and Hopkins P F 2022 PRX Quantum 3 010350
[16] Liu C H, Ballard A, Olaya D, Schmidt D R, Biesecker J, Lucas T, Ullom J, Patel S, Rafferty O, Opremcak A, et al. 2023 PRX Quantum 4 030310
[17] Liebermann P J and Wilhelm F K 2016 Phys. Rev. Appl. 6 024022
[18] Li K, McDermott R and Vavilov M G 2019 Phys. Rev. Appl. 12 014044
[19] Shevchenko P Pscan2 superconductor circuit simulator, 2015 available at: http://pscan2sim.org/index.html
[20] Mukhanov O A 2011 IEEE Transactions on Applied Superconductivity 21 760
[21] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[22] Steffen M, Martinis J M and Chuang I L 2003 Phys. Rev. B 68 224518
[23] Johansson J, Nation P and Nori F 2013 Comput. Phys. Commun. 184 1234
[1] Calibration and cancellation of microwave crosstalk in superconducting circuits
Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平). Chin. Phys. B, 2023, 32(9): 094203.
[2] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[3] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[4] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[7] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[8] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[9] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[10] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[11] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[12] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[13] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[14] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[15] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
No Suggested Reading articles found!