Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Valley filtering and valley-polarized collective modes in bulk graphene monolayers |
Jian-Long Zheng(郑建龙)1 and Feng Zhai(翟峰)1,2,† |
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China; 2 Zhejiang Institute of Photoelectronics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree of freedom has been suggested to encode and process information, which develops a new carbon-based electronics named graphene valleytronics. In this topical review, we present and discuss valley-related transport properties in bulk graphene monolayers, which are due to strain-induced pseudomagnetic fields and associated vector potential, sublattice-stagger potential, and the valley-Zeeman effect. These valley-related interactions can be utilized to obtain valley filtering, valley spatial separation, valley-resolved guiding modes, and valley-polarized collective modes such as edge or surface plasmons. The present challenges and the perspectives on graphene valleytronics are also provided in this review.
|
Received: 04 June 2023
Revised: 21 September 2023
Accepted manuscript online: 26 September 2023
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
73.43.Cd
|
(Theory and modeling)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
Fund: We express our sincere appreciation to our collaborators for their invaluable contributions to the related works presented in this review. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11774314 and 12274370) and Scientific Research Start-up Fund of Zhejiang Normal University (Grant No. YS304222903). |
Corresponding Authors:
Feng Zhai
E-mail: fzhai@zjnu.cn
|
Cite this article:
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰) Valley filtering and valley-polarized collective modes in bulk graphene monolayers 2024 Chin. Phys. B 33 017203
|
[1] Sham L J, Allen S J, Kamgar J A and Tsui D C 1978 Phys. Rev. Lett. 40 472 [2] Ohkawa F J and Uemura Y 1977 J. Phys. Soc. Jpn. 43 907 [3] Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P and Shayegan M 2006 Phys. Rev. Lett. 97 186404 [4] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055 [5] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D and Rothschild M 2018 Small 14 1801483 [6] Zhang Y, Jia L G, Chen Y Y, He L and Wang Y L 2022 Chin. Phys. B 31 087301 [7] Tian H Y, Ren C D and Wang S K 2022 Chin. Phys. B 33 212001 [8] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337 [9] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [10] Rycerz A, Tworzydło J and Beenakker C W J 2007 Nat. Phys. 3 172 [11] Garcia-Pomar J L, Cortijo A and Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801 [12] Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang K and Chen H 2014 Opt. Express 22 23605 [13] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806 [14] Kundu A, Fertig H A and Seradjeh B 2016 Phys. Rev. Lett. 116 016802 [15] Yang Q and Tong Q J 2022 Phys. Rev. B 106 115406 [16] Sharma S, Elliott P and Shallcross S 2023 Sci. Adv. 9 eadf3673 [17] Zhai F, Zhao X F, Chang K and Xu H Q 2010 Phys. Rev. B 82 115442 [18] Zhai F, Ma Y L and Zhang Y T 2011 J. Phys.:Condens. Matter 23 385302 [19] Song Y, Zhai F and Guo Y 2013 Appl. Phys. Lett. 103 183111 [20] Guinea F, Katsnelson M I and Geim A K 2010 Nat. Phys. 6 30 [21] Low T and Guinea F 2010 Nano Lett. 10 3551 [22] Myoung N, Choi H and Park H C 2020 Carbon 157 578 [23] Li S Y, Su Y, Ren Y N and He L 2020 Phys. Rev. Lett. 124 106802 [24] Ren Y N, Zhuang Y C, Sun Q F and He L 2022 Phys. Rev. Lett. 129 076802 [25] Zhai F, Ma Y L and Chang K 2011 New J. Phys. 13 083029 [26] Wu Z H, Zhai F, Peeters F M, Xu H Q and Chang K 2011 Phys. Rev. Lett. 106 176802 [27] Jiang Y J, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601 [28] Wang J, Chan K S and Lin Z J 2014 Appl. Phys. Lett. 104 013105 [29] Linnik T L 2014 Phys. Rev. B 90 075406 [30] Principi A, Katsnelson M I and Vignale G 2016 Phys. Rev. Lett. 117 196803 [31] Zhang Y, Guo B, Zhai F and Jiang W 2018 Phys. Rev. B 97 115455 [32] Zhang Y, Guo B, Zhai F and Jiang W 2018 Opt. Express 26 33453 [33] Zhang X P, Huang C L and Cazalilla M A 2017 2D Mater. 4 024007 [34] Yu H, Kutana A and Yakobson B 2022 Nano Lett. 22 2934 [35] Prabhakar S, Nepal R, Melnik R and Kovalev A A 2019 Phys. Rev. B 99 094111 [36] Ortiz W, Szpak N and Stegmann T 2020 Phys. Rev. B 106 035416 [37] Jung M, Fan Z Y and Shvets G 2018 Phys. Rev. Lett. 121 086807 [38] An X T, Xiao J, Tu M W Y, Yu H Y and Yao W 2017 Phys. Rev. Lett. 118 096602 [39] An X T and Yao W 2020 Phys. Rev. Appl. 14 014039 [40] Tu M W Y and Yao W 2017 2D Mater. 4 025109 [41] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [42] Martin I, Blanter Y M and Morpurgo A F 2008 Phys. Rev. Lett. 100 036804 [43] Semenoff G W, Semenoff V and Zhou F 2008 Phys. Rev. Lett. 101 087204 [44] Yao W, Yang S A and Niu Q 2009 Phys. Rev. Lett. 102 096801 [45] Li J, Wang K, McFaul K J, Zern Z, Ren Y, Watanabe K, Taniguchi T, Qiao Z and Zhu J 2016 Nat. Nanotechnol. 11 1060 [46] Chen H, Zhou P, Liu J, Qiao J, Oezyilmaz B and Martin J 2020 Nat. Commun. 11 1202 [47] Li J, Zhang R X, Yin Z X, Zhang J X, Watanabe K, Taniguchi T, Liu C X and Zhu J 2018 Science 362 1149 [48] Wang Z B, Cheng S G, Liu X and Jiang H 2021 Nanotechnology 32 402001 [49] Zhai F and Chang K 2012 Phys. Rev. B 85 155415 [50] Zhai F 2012 Nanoscale 4 206527 [51] Moldovan D, Masir M R, Covaci L and Peeters F M 2012 Phys. Rev. B 86 115431 [52] Lins A R S and Lima J R F 2020 Carbon 157 578 [53] Grujic M M, Tadic M Z and Peeters F M 2014 Phys. Rev. Lett. 113 046601 [54] Zhang Y, Zhai F and Jiang W 2023 Appl. Surf. Sci. 619 156717 [55] Wang J and Fischer S 2014 Phys. Rev. B 89 245421 [56] Gmitra M and Fabian J 2015 Phys. Rev. B 92 155403 [57] Alsharari A M, Asmar M M and Ulloa S E 2016 Phys. Rev. B 94 241106 [58] Cummings A W, Garcia J H, Fabian J and Roche S 2017 Phys. Rev. Lett. 119 206601 [59] Gmitra M and Fabian J 2017 Phys. Rev. Lett. 119 146401 [60] Dyrdal A and Barnas J 2017 2D Mater. 4 034003 [61] Bora M, Behera S K, Samal P and Deb P 2022 Phys. Rev. B 105 235422 [62] Zheng J L, Lu J Q and Zhai F 2022 Phys. Rev. B 105 165410 [63] Forsythe C, Zhou X D, Watanabe K, Taniguchi T, Pasupathy A, Moon P, Koshino M, Kim P and Dean C R 2018 Nat. Nanotechnol. 13 566 [64] Martiny J H J, Kaasbjerg K and Jauho A P 2019 Phys. Rev. B 100 155414 [65] Aktor T, Garcia J H, Roche S, Jauho A P and Power S R 2021 Phys. Rev. B 103 115406 [66] Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [67] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770 [68] Kim S, Ihm J, Choi H J and Son Y W 2008 Phys. Rev. Lett. 100 176802 [69] Vitali L, Riedl C, Ohmann R, Brihuega I, Starke U and Kern K 2008 Surf. Sci. 602 127 [70] Li G H, Luican A and Andrei E Y 2009 Phys. Rev. Lett. 102 176804 [71] Enderlein C, Kim Y S, Bostwick A, Rotenberg E and Horn K 2010 New J. Phys. 12 033014 [72] Cuong N T, Otani M and Okada S 2011 Phys. Rev. Lett. 106 106801 [73] Zanella I, Guerini S, Fagan S B, Mendes F J and Souza F A G 2008 Phys. Rev. B 77 073404 [74] Ribeiro R M, Peres N M R, Coutinho J and Briddon P R 2008 Phys. Rev. B 78 075442 [75] Zhai F and Xu H Q 2005 Phys. Rev. Lett. 94 246601 [76] Kubrak V, Rahman F, Gallagher B L, Main P C, Henini H, Marrows C H and Howson M A 1999 Appl. Phys. Lett. 74 2507 [77] Nogaret A, Bending S J and Henini M 2000 Phys. Rev. Lett. 84 2231 [78] Vancura T, Ihn T, Broderick S, Ensslin K, Wegscheider W and Bichler M 2000 Phys. Rev. B 62 5074 [79] Nogaret A, Lawton D N, Maude D K, Portal J C and Henini M 2003 Phys. Rev. B 67 165317 [80] Hong J, Joo S, Kim T S, Rhie K, Kim K H, Kim S U, Lee B C and Shin K H 2007 Appl. Phys. Lett. 90 023510 [81] Tarasov A, Hugger S, Xu H Y, Cerchez M, Heinzel T, Zozoulenko I V, Gasser-Szerer U, Reuter D and Wieck A D 2010 Phys. Rev. Lett. 104 186801 [82] Johnson M, Bennett B R, Yang M J, Miller M M and Shanabrook B V 1997 Appl. Phys. Lett. 71 974 [83] Lee S J, Souma S, Ihm G and Chang K J 2004 Phys. Rep. 394 1 [84] Xu H Q 1994 Phys. Rev. B 50 8469 [85] Zhai F and Lu J Q 2016 Phys. Rev. B 94 165426 [86] Pereira V M and Castro Neto A H 2009 Phys. Rev. Lett. 103 046801 [87] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 ACS Nano 2 2301 [88] Huang M Y, Yan H G, Chen C Y and Hone J 2009 Proc. Natl. Acad. Sci. USA 106 7304 [89] Zheng J L, Lu J Q and Zhai F 2021 Nanotechnology 32 025205 [90] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y and Wang H T 2014 Phys. Rev. Lett. 112 085502 [91] Koga T, Nitta J, Takayanagi H and Datta S 2002 Phys. Rev. Lett. 88 126601 [92] Khodas M, Shekhter A and Finkel'stein A M 2004 Phys. Rev. Lett. 92 086602 [93] Cheianov V V, Fal'ko V and Altshuler B L 2007 Science 315 1252 [94] Moghaddam A G and Zareyan M 2010 Phys. Rev. Lett. 105 146803 [95] Goos F and H anchen H 1947 Ann. Phys. 436 333 [96] Beenakker C W J, Sepkhanov R A, Akhmerov A R and Tworzydlo J 2009 Phys. Rev. Lett. 102 146804 [97] Young A F and Kim P 2009 Nat. Phys. 5 222 [98] Park C H, Son Y W, Yang L, Cohen M L and Louie S G 2008 Nano Lett. 8 2920 [99] Williams J R, Low T, Lundstrom M S and Marcus C M 2011 Nat. Nanotechnol. 6 222 [100] Li C F 2003 Phys. Rev. Lett. 91 133903 [101] Zhou X X, Zheng J L and Zhai F 2022 Commun. Theor. Phys. 74 075701 [102] Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509 [103] Valenzuela S O and Tinkham M 2006 Nature 442 176 [104] Recher P, Nilsson J, Burkard G and Trauzettel B 2009 Phys. Rev. B 79 085407 [105] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448 [106] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys. 11 1032 [107] Lee Y, Knothe A, Overweg H, Eich M, Gold C, Kurzmann A, Klasovika V, Taniguchi T, Wantanabe K, Fal'ko V, Ihn T, Ensslin K and Rickhaus P 2020 Phys. Rev. Lett. 124 126802 [108] Ge Z H, Slizovskiy S, Joucken F, Quezada E A, Taniguchi T, Watanabe K, Fal'ko V I and Velasco J 2021 Phys. Rev. Lett. 127 136402 [109] Park C 2019 Phys. Rev. Appl. 11 044033 [110] Park C 2018 Phys. Lett. A 382 121 [111] Yang H X, Hallal A, Terrade D, Waintal X, Roche S and Chshiev M 2013 Phys. Rev. Lett. 110 046603 [112] Wang Z Y, Tang C, Sachs R, Barlas Y and Shi J 2015 Phys. Rev. Lett. 114 016603 [113] Leutenantsmeyer J C, Kaverzin A A, Wojtaszek M and Van Wees B J 2017 2D Mater. 4 014001 [114] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S and Chen C T 2016 Nat. Mater. 15 711 [115] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernandez-Rossier J and Jarillo-Herrero P 2018 Science 360 1218 [116] Song Y 2018 J. Phys. D:Appl. Phys. 51 025002 [117] Solis D A, Hallal A, Waintal X and Chshiev M 2019 Phys. Rev. B 100 104402 [118] Evelt M, Ochoa H, Dzyapko O, Demidov V E, Yurgens A, Sun J, Tserkovnyak Y, Bessonov V, Rinkevich A B and Demokritov S O 2017 Phys. Rev. B 95 024408 [119] Hallal A, Ibrahim F, Yang H, Roche S and Chshiev M 2017 2D Mater. 4 025074 [120] Mast D B, Dahm A J and Fetter A L 1985 Phys. Rev. Lett. 54 1706 [121] Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petkovic I and Glattli D C 2014 Phys. Rev. Lett. 113 266601 [122] Jin D F, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljacic M, Fu L and Fang N X 2016 Nat. Commun. 7 13486 [123] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H and Crommie M F 2010 Science 544 13486 [124] Hsu C C, Teague M L, Wang J Q and Yeh N C 2020 Sci. Adv. 6 eaat9488 [125] Bandurin D A, Torre I, Kumar R K, Ben S M, Tomadin A, Principi A, Auton G H, Khestanova E, Novoselov K S, Grigorieva I V, Ponomarenko L A, Geim A K and Polini M 2016 Science 351 1055 [126] Crossno J, Shi J K, Wang K, Liu X, Harzheim A, Lucas A, Sachdev S, Kim P, Taniguchi T, Watanabe K, Ohki T A and Fong K C 2016 Science 351 1058 [127] Berdyugin A I, Xu S G, Pellegrino F M D, Krishna K R, Principi A, Torre I, Ben Shalom M, Taniguchi T, Watanabe K, Grigorieva I V, Polini M, Geim A K and Bandurin D A 2019 Science 364 162 [128] Vool U, Hamo A, Varnavides G, Wang Y, Zhou T X, Kumar N, Dovzhenko Y, Qiu Z, Garcia C A C, Pierce A T, Gooth J, Anikeeva P, Felser C, Narang P and Yacoby A 2021 Nat. Phys. 17 1216 [129] Sano R, Toshio R and Kawakami N 2021 Phys. Rev. B 104 L241106 [130] Tokura Y and Nagaosa N 2018 Nat. Commun. 9 3740 [131] Lucas A and Fong K C 2018 J. Phys.:Condens. Matter 30 053001 [132] Mueed M A, Hossain M S, Jo I, Pfeiffer L N, West K W, Baldwin K W and Shayegan M 2018 Phys. Rev. Lett. 121 036802 [133] Chang K, Miller B J, Yang H, Lin H C, Parkin S S P, Barraza-Lopez S, Xue Q K, Chen X and Ji S H 2019 Phys. Rev. Lett. 122 206402 [134] Liu R H, Zhang Y M, Zhou Y K, Nie J H, Li L J and Zhang Y 2023 Nano Energy 113 108550 [135] Yu Z M, Guan S, Sheng X L, Gao W B and Yang S A 2020 Phys. Rev. Lett. 124 037701 [136] Song Z G, Sun X T, Zheng J X, Pan F, Hou Y L, Yung M H, Yang J B and Lu J 2018 Nanoscale 10 13986 [137] Li H K, Fong K Y, Zhu H Y, Li Q W, Wang S Q, Yang S, Wang Y and Zhang X 2019 Nat. Photonics 13 397 [138] Berdyugin A I, Tsim B, Kumaravadivel P, Xu S G, Ceferino A, Knothe A, Kumar R K, Taniguchi T, Watanabe K, Geim A K, Grigorieva I V and Fal'ko V I 2020 Sci. Adv. 6 7838 [139] Li R H, Mao N, Wu X M, Huang B B, Dai Y and Niu C W 2023 Nano Lett. 23 91 [140] Hossain M S, Ma M K, Villegas-Rosales K A, Chung Y J, Pfeiffer L N, West K W, Baldwin K W and Shayegan M 2021 Phys. Rev. Lett. 127 116601 [141] Lin Z Z, Liu Y Z, Wang Z, Xu S N, Chen S Y, Duan W H and Monserrat B 2022 Phys. Rev. Lett. 129 027401 [142] Lai S, Zhang Z W, Wang N Z, Rasmita A, Deng Y, Liu Z and Gao W B 2023 Nano Lett. 23 192 [143] Shi J R, Zhang P, Xiao D and Niu Q 2006 Phys. Rev. Lett. 96 076604 [144] Bhowal S and Vignale G 2021 Phys. Rev. B 103 195309 [145] Ang Y S, Yang S Y A, Zhang C, Ma Z S and Ang L K 2017 Phys. Rev. B 96 245410 [146] Mu H Y, Yao Y T, Li J R, Liu G C, He C, Sun Y J, Yang G, An X T, Zhang Y Z and Liu J J 2020 J. Phys. Chem. Lett. 11 3882 [147] Giovannetti G, Capone M, van den Brink J and Ortix C 2015 Phys. Rev. B 91 121417(R) [148] Venderbos J W F, Manzardo M, Efremov D V, van den Brink J and Ortix C 2016 Phys. Rev. B 93 045428 [149] Beenakker C W J, Gnezdilov N V, Dresselhaus E, Ostroukh V P, Herasymenko Y, Adagideli I and Tworzydlo J 2018 Phys. Rev. B 97 241403(R) [150] Khalifa A M, Kaul R K, Shimshoni E, Fertig H A and Murthy G 2021 Phys. Rev. Lett. 127 126801 [151] Pham P V, Bodepudi S C, Shehzad K, Liu Y, Xu Y, Yu B and Duan X F 2022 Chem. Rev. 122 6514 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|