Special Issue:
TOPICAL REVIEW — 2D materials: physics and device applications
|
TOPICAL REVIEW—2D materials: physics and device applications |
Prev
Next
|
|
|
Review of ultrafast spectroscopy studies of valley carrier dynamics in two-dimensional semiconducting transition metal dichalcogenides |
Dong Sun(孙栋)1,2, Jia-Wei Lai(赖佳伟)1, Jun-Chao Ma(马骏超)1, Qin-Sheng Wang(王钦生)1, Jing Liu (刘晶)3 |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
3 State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China |
|
|
Abstract The two-dimensional layered transition metal dichalcogenides provide new opportunities in future valley-based information processing and also provide an ideal platform to study excitonic effects. At the center of various device physics toward their possible electronic and optoelectronic applications is understanding the dynamical evolution of various many-particle electronic states, especially exciton which dominates the optoelectronic response of TMDs, under the novel context of valley degree of freedom. Here, we provide a brief review of experimental advances in using helicity-resolved ultrafast spectroscopy, especially ultrafast pump-probe spectroscopy, to study the dynamical evolution of valley-related many-particle electronic states in semiconducting monolayer transitional metal dichalcogenides.
|
Received: 17 October 2016
Revised: 21 December 2016
Accepted manuscript online:
|
PACS:
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
78.47.jd
|
(Time resolved luminescence)
|
|
71.35.-y
|
(Excitons and related phenomena)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921300 and 2014CB920900), the National Key Research and Development Program of China (Grant No. 2016YFA0300802), the National Natural Science Foundation of China (Grant Nos. 11274015, 11674013, and 21405109), the Recruitment Program of Global Experts, China, and Beijing Natural Science Foundation, China (Grant No. 4142024). |
Corresponding Authors:
Dong Sun
E-mail: sundong@pku.edu.cn
|
Cite this article:
Dong Sun(孙栋), Jia-Wei Lai(赖佳伟), Jun-Chao Ma(马骏超), Qin-Sheng Wang(王钦生), Jing Liu (刘晶) Review of ultrafast spectroscopy studies of valley carrier dynamics in two-dimensional semiconducting transition metal dichalcogenides 2017 Chin. Phys. B 26 037801
|
[1] |
Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
|
[2] |
Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nano. 7 494
|
[3] |
Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nano. 7 490
|
[4] |
Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
|
[5] |
Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802
|
[6] |
Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
|
[7] |
Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G and Crommie M F 2014 Nat. Mater. 13 1091
|
[8] |
Zhang C, Johnson A, Hsu C L, Li L J and Shih C K 2014 Nano. Lett. 14 2443
|
[9] |
Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
|
[10] |
Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474
|
[11] |
You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R and Heinz T F 2015 Nat. Phys. 11 477
|
[12] |
Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
|
[13] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nano. 7 699
|
[14] |
Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nano. 9 780
|
[15] |
Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899
|
[16] |
Mak K F and Shan J 2016 Nat. Photon. 10 216
|
[17] |
Wang Q, Lai J and Sun D 2016 Opt. Mater. Express 6 2313
|
[18] |
Korn T, Heydrich S, Hirmer M, Schmutzler J and Schüller C 2011 Appl. Phys. Lett. 99 102109
|
[19] |
Lagarde D, Bouet L, Marie X, Zhu C R, Liu B L, Amand T, Tan P H and Urbaszek B 2014 Phys. Rev. Lett. 112 047401
|
[20] |
Sim S, Park J, Song J G, In C, Lee Y S, Kim H and Choi H 2013 Phys. Rev. B 88 075434
|
[21] |
Yan T, Qiao X, Tan P and Zhang X 2015 Sci. Rep. 5 15625
|
[22] |
Wang G, Palleau E, Amand T, Tongay S, Marie X and Urbaszek B 2015 Appl. Phys. Lett. 106 112101
|
[23] |
Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X and Urbaszek B 2014 Phys. Rev. B 90 075413
|
[24] |
Graham R, Schlautmann M and Shepelyansky D L 1991 Phys. Rev. Lett. 67 255
|
[25] |
Amand T, Barrau J, Marie X, Lauret N, Dareys B, Brousseau M and Laruelle F 1993 Phys. Rev. B 47 7155
|
[26] |
Wang Q, Ge S, Li X, Qiu J, Ji Y, Feng J and Sun D 2013 ACS Nano 7 11087
|
[27] |
Kumar N, He J, He D, Wang Y and Zhao H 2014 Nanoscale 6 12690
|
[28] |
Mai C, Barrette A, Yu Y, Semenov Y G, Kim K W, Cao L and Gundogdu K 2014 Nano. Lett. 14 202
|
[29] |
Sie E J, Frenzel A J, Lee Y H, Kong J and Gedik N 2015 Phys. Rev. B 92 125417
|
[30] |
Mai C, Semenov Y G, Barrette A, Yu Y, Jin Z, Cao L, Kim K W and Gundogdu K 2014 Phys. Rev. B 90 041414
|
[31] |
Schmidt R, Bergh? user G, Schneider R, Selig M, Tonndorf P, Mali? E, Knorr A, Michaelis de Vasconcellos S and Bratschitsch R 2016 Nano Lett. 16 2945
|
[32] |
Chernikov A, Ruppert C, Hill H M, Rigosi A F and Heinz T F 2015 Nat. Photon. 9 466
|
[33] |
Sie E J, McIver J W, Lee Y H, Fu L, Kong J and Gedik N 2015 Nat. Mater. 14 290
|
[34] |
Kim J, Hong X, Jin C, Shi S F, Chang C Y S, Chiu M H, Li L J and Wang F 2014 Science 346 1205
|
[35] |
MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
|
[36] |
Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148
|
[37] |
Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoglu A 2015 Nat. Phys. 11 141
|
[38] |
Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L and Marie X 2014 Phys. Rev. B 90 161302
|
[39] |
Dal Conte S, Bottegoni F, Pogna E A A, De Fazio D, Ambrogio S, Bargigia I, D'Andrea C, Lombardo A, Bruna M, Ciccacci F, Ferrari A C, Cerullo G and Finazzi M 2015 Phys. Rev. B 92 235425
|
[40] |
Yu T and Wu M W 2014 Phys. Rev. B 89 205303
|
[41] |
Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J and Chang W H 2015 Nat. Commun. 6 8963
|
[42] |
Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J and Crooker S A 2015 Nat. Phys. 11 830
|
[43] |
Moody G, Schaibley J and Xu X 2016 J. Opt. Soc. Am. B 33 C39
|
[44] |
Glazov M M, Ivchenko E L, Wang G, Amand T, Marie X, Urbaszek B and Liu B L 2015 Phys. Status Solidi B 252 2349
|
[45] |
Lu J, Liu H, Tok E S and Sow C H 2016 Chem. Soc. Rev. 45 2494
|
[46] |
Kioseoglou G, Korkusinski M, Scrace T, Hanbicki A T, Currie M, Jonker B T, Petrou A and Hawrylak P 2016 Phys. Status Solidi-Rapid Res. Lett. 10 111
|
[47] |
Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
|
[48] |
Yu H, Cui X, Xu X and Yao W 2015 Natl. Sci. Rev. 2 57
|
[49] |
Zeng H and Cui X 2015 Chem. Soc. Rev. 44 2629
|
[50] |
Zhao W, Ribeiro R M and Eda G 2015 Acc. Chem. Res. 48 91
|
[51] |
Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W and Cui X 2013 Sci. Rep. 3 1608
|
[52] |
Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
|
[53] |
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano. Lett. 10 1271
|
[54] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[55] |
Pogna E A A, Marsili M, De Fazio D, Dal Conte S, Manzoni C, Sangalli D, Yoon D, Lombardo A, Ferrari A C, Marini A, Cerullo G and Prezzi D 2016 ACS Nano 10 1182
|
[56] |
Carvalho A, Ribeiro R M and Castro Neto A H 2013 Phys. Rev. B 88 115205
|
[57] |
Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C and Novoselov K S 2013 Science 340 1311
|
[58] |
Scalise E, Houssa M, Cinquanta E, Grazianetti C, Broek B v d, Pourtois G, Stesmans A, Fanciulli M and Molle A 2014 2D Materials 1 011010
|
[59] |
Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406
|
[60] |
Ramasubramaniam A 2012 Phys. Rev. B 86 115409
|
[61] |
Qiu D Y, da Jornada F H and Louie S G 2013 Phys. Rev. Lett. 111 216805
|
[62] |
Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218
|
[63] |
Kozawa D, Kumar R, Carvalho A, Kumar Amara K, Zhao W, Wang S, Toh M, Ribeiro R M, Castro Neto A H, Matsuda K and Eda G 2014 Nat. Commun. 5 4543
|
[64] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[65] |
Rivera P, Seyler K L, Yu H, Schaibley J R, Yan J, Mandrus D G, Yao W and Xu X 2016 Science 351 688
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|