ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity |
Xiu-Wen Xia(夏秀文)1,2, Xin-Qin Zhang(张新琴)1, Jing-Ping Xu(许静平)2, Ya-Ping Yang(羊亚平)2 |
1 School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China; 2 MOE Key laboratory of Advanced Micro-structure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 dB. Furthermore, its application as an all-optical logic AND gate is also discussed.
|
Received: 01 December 2015
Revised: 18 February 2016
Accepted manuscript online:
|
PACS:
|
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701). |
Corresponding Authors:
Xiu-Wen Xia
E-mail: jgsuxxw@126.com
|
Cite this article:
Xiu-Wen Xia(夏秀文), Xin-Qin Zhang(张新琴), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平) High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity 2016 Chin. Phys. B 25 084211
|
[1] |
Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
|
[2] |
Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447
|
[3] |
Wang C, Zhong X L and Li Z-Y 2012 Sci. Rep. 2 674
|
[4] |
Hu X, Li Z, Zhang J, Yang H, Gong Q and Zhang X 2011 Adv. Funct. Mater. 21 1803
|
[5] |
Espinola R L, Izuhara T, Tsai M C, Osgood J R M and Dötsch H 2004 Opt. Lett. 29 941
|
[6] |
Zaman T R, Guo X and Ram R J 2007 Appl. Phys. Lett. 90 023514
|
[7] |
Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C A 2011 Nat. Photon. 5 758
|
[8] |
Ibrahim S K, Bhandare S, Sandel D, Zhang H and Noe R 2004 Electron. Lett. 40 1293
|
[9] |
Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401
|
[10] |
Allahverdyan K R, Gevorgyan A H, Hakobyan R S and Galstian T V 2013 JETP Lett. 96 694
|
[11] |
Zheng J, Fang Y, Hu J and Yang L 2014 J. Nanoelectron. Opt. 9 406
|
[12] |
Shen H Z, Zhou Y H and Yi X X 2014 Phys. Rev. A 90 023849
|
[13] |
Bulgakov E N and Sadreev A F 2014 Opt. Lett. 39 1787
|
[14] |
Gallo K and Assanto G 1999 J. Opt. Soc. Am. B 16 267
|
[15] |
Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
|
[16] |
Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524
|
[17] |
Xia X W, Xu J P and Yang Y P 2014 J. Opt. Soc. Am. B 31 2175
|
[18] |
Xia X W, Xu J P and Yang Y P 2014 Phys. Rev. A 90 043857
|
[19] |
Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popovic M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R and Renner H 2013 Nat. Photon. 7 579
|
[20] |
Szoke A, Daneu V, Goldhar J and Kurnit N 1969 Appl. Phys. Lett. 15 376
|
[21] |
Joshi A, Brown A, Wang H and Xiao M 2003 Phys. Rev. A 67 041801
|
[22] |
Prataviera G A, Yoshida A C and Mizrahi S S 2013 Phys. Rev. A 87 043831
|
[23] |
Bonifacio R and Lugiato L A 1978 Phys. Rev. Lett. 40 1023
|
[24] |
Pellegrini V, Fuso F, Arimondo E, Castelli F, Lugiato L, Bava G and Debernardi P 1994 Phys. Rev. A 50 5219
|
[25] |
Mitchell N, Connolly J, O'Gorman J and Hegarty J 1994 Opt. Lett. 19 269
|
[26] |
Bonifacio R and Lugiato L A 1978 Phys. Rev. A 18 1129
|
[27] |
Ballarini D, De Giorgi M, Cancellieri E, Houdré R, Giacobino E, Cingolani R, Bramati A, Gigli G and Sanvitto D 2013 Nat. Commun. 4 1778
|
[28] |
Rosenberger A T, Orozco L A, Kimble H J and Drummond P D 1991 Phys. Rev. A 43 6284
|
[29] |
Shakhmuratov R N, Odeurs J and Mandel P 2007 Phys. Rev. A 75 013808
|
[30] |
Yüce E, Ctistis G, Claudon J, Dupuy E, Buijs R D, de Ronde B, Mosk A P, Géard J M and Vos W L 2013 Opt. Lett. 38 374
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|