Tunable spectral continuous shift of high-order harmonic generation in atoms by a plasmon-assisted shaping pulse
Yuan Wang(王源)1,2, Yulong Li(李玉龙)3, Yue Qiao(乔月)1,2, Na Gao(高娜)1,2, Fu-Ming Guo(郭福明)1,2, Zhou Chen(陈洲)1,2, Lan-Hai He(赫兰海)1,2,†, Yu-Jun Yang(杨玉军)1,2,‡, Xi Zhao(赵曦)4,§, and Jun Wang(王俊)1,2,¶
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China; 3 Beijing Institute of Space Launch Technology, Beijing 100076, China; 4 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse. Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse. This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics. Notably, we observe a modulated shift in the created harmonic photon energy, spanning an impressive range of 1.2 eV. This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse, directly influencing the position of the peak frequency emission. Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse, offering valuable insights into the underlying mechanisms driving this phenomenon. Furthermore, our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered. We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores. This observation introduces an innovative approach for generating semi-integer order harmonics, thus expanding our understanding of high-order harmonic generation. Ultimately, our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications, particularly those involving precise spectral control and the generation of unique harmonic patterns.
(Distances, redshifts, radial velocities; spatial distribution of galaxies)
Fund: This project was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFE134200 and 2019YFA0307700), the National Natural Science Foundation of China (Grant Nos. 11604119, 12104177, 11904192, 12074145, and 11704147), and the Fundamental Research Funds for the Central Universities (Grant Nos. GK202207012 and QCYRCXM-2022-241).
Corresponding Authors:
Lan-Hai He, Yu-Jun Yang, Xi Zhao, Jun Wang
E-mail: helanhai@jlu.edu.cn;yangyj@jlu.edu.cn;zhaoxi719@snnu.edu.cn;wangjun86@jlu.edu.cn
Cite this article:
Yuan Wang(王源), Yulong Li(李玉龙), Yue Qiao(乔月), Na Gao(高娜),Fu-Ming Guo(郭福明), Zhou Chen(陈洲), Lan-Hai He(赫兰海),Yu-Jun Yang(杨玉军), Xi Zhao(赵曦), and Jun Wang(王俊) Tunable spectral continuous shift of high-order harmonic generation in atoms by a plasmon-assisted shaping pulse 2024 Chin. Phys. B 33 034212
[1] L'Huillier A, Schafer K J and Kulander K C 1991 J. Phys. B: At. Mol. Opt. Phys.24 3315 [2] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys.60 389 [3] Krausz F and Ivanov M 2009 Rev. Mod. Phys.81 163 [4] Qiao Y, Chen J, Huo Y, Liang H, Yu R, Chen J, Liu W, Jiang S and Yang Y 2023 Phys. Rev. A107 023523 [5] Qiao Y, Huo Y, Liang H, Chen J, Liu W, Yang Y and Jiang S 2023 Phys. Rev. B107 075201 [6] Yuan G, Lu R, Jiang S and Dorfman K 2023 Ultrafast Sci.3 0040 [7] Yuan H, Yang Y, Guo F, Wang J and Cui Z 2022 Opt. Express30 19745 [8] Yuan H, Yang Y, Guo F, Wang J, Chen J, Feng W and Cui Z 2023 Opt. Express31 24213 [9] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett.41 014205 [10] Burnett N, Baldis H, Richardson M and Enright G 1977 Appl. Phys. Lett.31 172 [11] Brabec T and Krausz F 2000 Rev. Mod. Phys.72 545 [12] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature414 509 [13] Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J and Zhao Z 2020 Chin. Phys. Lett.37 023201 [14] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B, Chen J and Lin C 2020 Phys. Rev. Appl.13 034043 [15] Lewenstein M, Balcou P, Ivanov M Y, L'huillier A and Corkum P B 1994 Phys. Rev. A49 2117 [16] Li X F, Qiao Y, Wu D, Yu R X, Chen J G, Wang J, Guo F M and Yang Y J 2024 Chin. Phys. B33 013302 [17] Chang Z, Rundquist A, Wang H, Christov I, Kapteyn H and Murnane M 1998 Phys. Rev. A58 R30 [18] Lee D G, Kim J H, Hong K H and Nam C H 2001 Phys. Rev. Lett.87 243902 [19] Sekikawa T, Ohno T, Yamazaki T, Nabekawa Y and Watanabe S 1999 Phys. Rev. Lett.83 2564 [20] de Bohan A, Antoine P, Milošević D B and Piraux B 1998 Phys. Rev. Lett.81 1837 [21] Sansone G, Vozzi C, Stagira S, Pascolini M, Poletto L, Villoresi P, Tondello G, De Silvestri S and Nisoli M 2004 Phys. Rev. Lett.92 113904 [22] Zhao X, Chen J, Fu P, Liu X, Yan Z C and Wang B 2013 Phys. Rev. A87 043411 [23] Goulielmakis E, Schultze M, Hofstetter M, et al. 2008 Science320 1614 [24] Chen J G, Yang Y J, Zeng S L and Liang H Q 2011 Phys. Rev. A83 023401 [25] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature453 757 [26] Neyra E, Videla F, Ciappina M F, Pérez-Hernández J, Roso L, Lewenstein M and Torchia G 2018 J. Opt.20 034002 [27] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M and Yang Y J 2015 Phys. Rev. A92 033848 [28] Han J X, Wang J, Qiao Y, Liu A H, Guo F M and Yang Y J 2019 Opt. Express27 8768 [29] Ciappina M F, Biegert J, Quidant R and Lewenstein M 2012 Phys. Rev. A85 033828 [30] Guo Y, Liu A, Wang J and Liu X 2019 Chin. Phys. B28 094212 [31] Oldal L G, Csizmadia T, Ye P, Harshitha N G, Zair A, Kahaly S, Varjú K, Füle M and Major B 2020 Phys. Rev. A102 013504 [32] Watson J, Sanpera A and Burnett K 1995 Phys. Rev. A51 1458 [33] Schafer K J and Kulander K C 1997 Phys. Rev. Lett.78 638 [34] Geissler M, Tempea G and Brabec T 2000 Phys. Rev. A62 033817 [35] Bian X B and Bandrauk A D 2014 Phys. Rev. Lett.113 193901 [36] Du H, Xue S, Wang H, Zhang Z and Hu B 2015 Phys. Rev. A91 063844 [37] Qiao Y, Wang J, Yan Y, Song S, Chen Z, Liu A, Chen J, Guo F and Yang Y 2022 Chin. Phys. B31 064214 [38] Qi T, Huo X X, Zhang J and Liu X S 2020 Chin. Phys. B29 053201 [39] Chen Z, Song Y D and Hu Z 2014 J. Phys.: Conf. Ser.488 032044 [40] Chen Z, Tong Q N, Zhang C C and Hu Z 2015 Chin. Phys. B24 043303 [41] Weiner A M 2011 Opt. Commun.284 3669 [42] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A73 063409 [43] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D and Baumert T 2005 J. Mod. Opt.52 2187 [44] Wang S, Khan S U, Tian X Q, Sun H B and Jiang W C 2021 Chin. Phys. B30 083301
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.