Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017102    DOI: 10.1088/1674-1056/26/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Control of topological phase transitions in Dirac semimetal films by exchange fields

Fei Yang(杨菲), Hai-Long Wang(王海龙), Hui Pan(潘晖)
Department of Physics, Beihang University, Beijing 100191, China
Abstract  

The exchange field effects on topological Dirac semimetal (DSM) films are discussed in this article. A topological phase transition can be controlled by tuning the exchange field together with the quantum confinement effects. What is more interesting is that the system can transit into the quantum anomalous Hall (QAH) state from the topologically trivial state (Z2=0) or from the topologically nontrivial state (Z2=1), depending on the thickness of the DSM films. This provides a useful mechanism to realize the QAH state from the DSM.

Keywords:  exchange field      Dirac semimetal      quantum anomalous Hall state      quantum spin Hall state  
Received:  05 July 2016      Revised:  22 October 2016      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.22.Gk (Broken symmetry phases)  
  73.43.Nq (Quantum phase transitions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11574019).

Corresponding Authors:  Hai-Long Wang, Hui Pan     E-mail:  hlwang@buaa.edu.cn;hpan@buaa.edu.cn

Cite this article: 

Fei Yang(杨菲), Hai-Long Wang(王海龙), Hui Pan(潘晖) Control of topological phase transitions in Dirac semimetal films by exchange fields 2017 Chin. Phys. B 26 017102

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001
[4] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[5] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[6] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[7] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[8] Ren Y F, Qiao Z H and Niu Q 2016 Rep. Prog. Phys. 79 066501
[9] Wong H M, Yu R, Hu X, Dai X and Fang Z 2015 Adv. Phys. 64 227
[10] Liu C X, Zhang S C and Qi X L 2016 Annu. Rev. Condens. Matter Phys. 7 301
[11] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[12] Laughlin R B 1981 Phys. Rev. B 23 5632
[13] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[14] Qiao Z H, Ren W, Chen H, Bellaiche L, Zhang Z Y, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404
[15] Qiao Z H, Yang S A, Feng W X, Tse W K, Ding J, Yao Y G, Wang J and Niu Q 2010 Phys. Rev. B 82 161414
[16] Qiao Z H, Han Y L, Zhang L, Wang K, Deng X Z, Jiang H, Yang S Y, Wang J and Niu Q 2016 Phys. Rev. Lett. 117 056802
[17] Zhang H B, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802
[18] Choi Y H, Jo N H, Lee K J, Yoon J B, You C Y and Jung M H 2011 J. Appl. Phys. 109 07E312
[19] Qi S F, Qiao Z H, Deng X Z, Cubuk E D, Chen H, Zhu W G, Kaxiras E, Zhang S B, Xu X H and Zhang Z Y 2016 Phys. Rev. Lett. 117 056804
[20] Qiao Z H, Jiang H, Li X, Yao Y G and Niu Q 2012 Phys. Rev. B 85 115439
[21] Nourbakhsh Z and Vaez A 2016 Chin. Phys. B 25 037101
[22] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[23] Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 166802
[24] Hor Y S, Roushan P, Beidenkopf H, Seo J, Qu D, Checkelsky J G, Wray L A, Hsieh D, Xia Y, Xu S Y, Qian D, Hasan M Z, Ong N P, Yazdani A and Cava R J 2010 Phys. Rev. B 81 195203
[25] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 199901
[26] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[27] Zhang Y, Liu Z K, Zhou B, Kim Y, Hussain Z, Shen Z X, Chen Y L and Mo S K 2014 Appl. Phys. Lett. 105 031901
[28] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
[29] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C and Hasan M Z 2014 Nat.Commun. 5 3786
[30] Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851
[31] Liang T, Gibson Q, Ali M N, Liu M H, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[32] Yi H, Wang Z J, Chen C Y, Shi Y G, Feng Y, Liang A J, Xie Z J, He S L, He J F, Peng Y Y, Liu X, Liu Y, Zhao L, Liu G D, Dong X L, Zhang J, Nakatake M, Arita M, Shimada K, Namatame H, Taniguchi M, Xu Z Y, Chen C T, Dai X, Fang Z and Zhou X J 2014 Sci. Rep. 4 6106
[33] He L P, Hong X C, Dong J K, Pan J, Zhang Z and Li S Y 2014 Phys. Rev. Lett. 113 246402
[34] Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J and Hasan M Z 2015 Science 347 294
[35] Xiao X B, Yang S A, Liu Z F, Li H L and Zhou G H 2015 Sci. Rep. 5 7898
[36] Pan H, Wu M M, Liu Y and Yang S A 2015 Sci. Rep. 5 14639
[37] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[38] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[39] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[40] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[41] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[42] Lu Q, Zhang H Y, Cheng Y, Chen X R and Ji G F 2016 Chin. Phys. B 25 026401
[43] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[44] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
[1] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[2] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[3] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[4] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
[5] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
[6] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[7] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[8] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
[9] Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy
Aiji Liang(梁爱基), Chaoyu Chen(陈朝宇), Zhijun Wang(王志俊), Youguo Shi(石友国), Ya Feng(冯娅), Hemian Yi(伊合绵), Zhuojin Xie(谢卓晋), Shaolong He(何少龙), Junfeng He(何俊峰), Yingying Peng(彭莹莹), Yan Liu(刘艳), Defa Liu(刘德发), Cheng Hu(胡成), Lin Zhao(赵林), Guodong Liu(刘国东), Xiaoli Dong(董晓莉), Jun Zhang(张君), M Nakatake, H Iwasawa, K Shimada, M Arita, H Namatame, M Taniguchi, Zuyan Xu(许祖彦), Chuangtian Chen(陈创天), Hongming Weng(翁红明), Xi Dai(戴希), Zhong Fang(方忠), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2016, 25(7): 077101.
[10] Finite size effects on the helical edge states on the Lieb lattice
Rui Chen(陈锐), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(6): 067204.
[11] Quantum transport properties of the three-dimensional Dirac semimetal Cd3As2 single crystals
Lan-Po He(何兰坡), Shi-Yan Li(李世燕). Chin. Phys. B, 2016, 25(11): 117105.
[12] Recent observations of negative longitudinal magnetoresistance in semimetal
Xi-Tong Xu(许锡童), Shuang Jia(贾爽). Chin. Phys. B, 2016, 25(11): 117204.
[13] Large linear magnetoresistance in a new Dirac material BaMnBi2
Yi-Yan Wang(王义炎), Qiao-He Yu(郁巧鹤), Tian-Long Xia(夏天龙). Chin. Phys. B, 2016, 25(10): 107503.
[14] Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd3As2
Cheng Zhang(张成), Tong Zhou(周通), Sihang Liang(梁斯航), Junzhi Cao(曹钧植),Xiang Yuan(袁翔), Yanwen Liu(刘彦闻), Yao Shen(沈瑶), Qisi Wang(王奇思),Jun Zhao(赵俊), Zhongqin Yang(杨中芹), Faxian Xiu(修发贤). Chin. Phys. B, 2016, 25(1): 017202.
[15] Antiferromagnetic and topological states in silicene: A mean field study
Liu Feng (刘峰), Liu Cheng-Cheng (刘铖铖), Yao Yu-Gui (姚裕贵). Chin. Phys. B, 2015, 24(8): 087503.
No Suggested Reading articles found!