Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 058902    DOI: 10.1088/1674-1056/acb9f9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

AG-GATCN: A novel method for predicting essential proteins

Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾)
School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  Essential proteins play an important role in disease diagnosis and drug development. Many methods have been devoted to the essential protein prediction by using some kinds of biological information. However, they either ignore the noise presented in the biological information itself or the noise generated during feature extraction. To overcome these problems, in this paper, we propose a novel method for predicting essential proteins called attention gate-graph attention network and temporal convolutional network (AG-GATCN). In AG-GATCN method, we use improved temporal convolutional network (TCN) to extract features from gene expression sequence. To address the noise in the gene expression sequence itself and the noise generated after the dilated causal convolution, we introduce attention mechanism and gating mechanism in TCN. In addition, we use graph attention network (GAT) to extract protein-protein interaction (PPI) network features, in which we construct the feature matrix by introducing node2vec technique and 7 centrality metrics, and to solve the GAT oversmoothing problem, we introduce gated tanh unit (GTU) in GAT. Finally, two types of features are integrated by us to predict essential proteins. Compared with the existing methods for predicting essential proteins, the experimental results show that AG-GATCN achieves better performance.
Keywords:  complex networks      essential proteins      temporal convolutional network      graph attention network      gene expression  
Received:  18 October 2022      Revised:  08 December 2022      Accepted manuscript online:  08 February 2023
PACS:  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11861045, 11361033, and 62162040).
Corresponding Authors:  Pengli Lu     E-mail:  lupengli88@163.com

Cite this article: 

Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾) AG-GATCN: A novel method for predicting essential proteins 2023 Chin. Phys. B 32 058902

[1] Kamath R S, Fraser A G, Dong Y, et al. 2003 Nature 421 231
[2] Clatworthy A E, Pierson E, Hung D T, et al. 2007 Nat. Chem. Biol. 3 541
[3] Giaever G, Chu A M, Ni L, et al. 2002 Nature 418 387
[4] Cullen L M and Arndt G M 2005 Immunol. 83 217
[5] Roemer T, Jiang B, Davison J, et al. 2003 Mol. Microbiol. 50 167
[6] Maple J and Moller S G 2007 Circadian Rhythms p. 207
[7] Zhu H and Snyder M 2003 Curr. Opin. Chem. Biol. 7 55
[8] Freeman L C 1978 Soc. Networks 1 215
[9] Joy M P, Brock A, Ingber D E, et al. 2005 Jour. Biom. Biot. 2005 96
[10] Wuchty S and Stadler P F 2003 J. Theor. Biol. 223 45
[11] Estrada E and Rodriguez-Velazquez J A 2005 Phys. Rev. E. 71 056103
[12] Wang J X, Li M, Wang H, et al. 2011 IEEE ACM Trans. Comput. Biol. Bioi. 9 1070
[13] Li M, Wang J X, Chen X, et al. 2011 Comput. Biol. Chem. 35 143
[14] Zhang X, Xiao W X, Acencio M L, et al. 2016 BMC Bioi. 17 322
[15] Zhang C L and Zhang S W 2013 Comput. Biol. Med. 43 568
[16] Xiao Q H, Wang J X and Peng X, et al. 2015 BMC Genom. 16 S1
[17] Tang X W, Wang J X, Zhong J C, et al. 2013 IEEE ACM Trans. Comput. Biol. Bioi. 11 407
[18] Yugandhar K and Gromiha M M 2014 Prot. Stru. Func. Bioi. 82 2088
[19] Luo J W and Qi Y 2015 PloS one 10 e0131418
[20] Li M, Lu Y, Niu Z B, et al. 2015 IEEE ACM Trans. Comput. Biol. Bioi. 14 370
[21] Li M, Zhang H H, Wang J X, et al. 2012 BMC Syst. Biol. 6 1
[22] Zhong J C, Tang C, Peng W, et al. 2021 BMC Bioi. 22 1
[23] Li M, Li W K, Wu F X, et al. 2018 J. Theor. Biol. 447 65
[24] Wu C Y, Lin B T, Shi K, et al. 2021 Curr. Bioi. 16 1161
[25] Wang N, Zeng M, Li Y M, et al. 2021 J. Comput. Biol. 28 687
[26] Ahmed N M, Chen L, Li B, et al. 2021 Soft Comput. 25 8883
[27] Lei X J, Yang X Q, Wu F X, et al. 2018 IEEE ACM Trans. Comput. Biol. Bioi. 17 495
[28] Zeng M, Li M, Wu F X, et al. 2019 BMC Bioi. 20 506
[29] Li Y M, Zeng M, Wu Y F, et al. 2021 IEEE ACM Trans. Comput. Biol. Bioi. 19 3263
[30] Kipf T N and Welling M 2016 arXiv: 1609.02907
[31] Veličković P, Cucurull G, Casanova A, et al. 2017 arXiv: 1710.10903
[32] Bai S J, Kolter J Z, Koltun V, et al. 2018 arXiv: 1803.01271
[33] Bahdanau D, Cho K, Bengio Y, et al. 2014 arXiv: 1409.0473
[34] Grover A and Leskovec J 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining pp. 855-864
[35] Dauphin Y N, Fan A, Auli M, et al. 2017 International conference on machine learning pp. 933-941
[36] Chatr-Aryamontri A, Oughtred R, Boucher L, et al. 2017 Nucleic Acids Res. 45 D369
[37] Mewes H W, Frishman D, Güldener U, et al. 2002 Nucleic Acids Res. 30 31
[38] Cherry J M, Adler C, Ball C, et al. 1998 Nucleic Acids Res. 26 73
[39] Zhang R and Lin Y 2009 Nucleic Acids Res. 37 D455
[40] Winzeler E A, Shoemaker D D, Astromoff A, et al. 1999 Science 285 901
[41] Tu B P, Kudlicki A, Rowicka M, et al. 2005 Science 310 1152
[42] Zahidi Y, El Younoussi Y, Azroumahli C, et al. 2019 2019 5th International Conference on Optimization and Applications pp. 1-10
[43] Pedregosa F, Varoquaux G, Gramfort A, et al. 2011 J. Mach. Learn. Res. 12 2825
[44] Zeng M, Li M, Fei Z H, et al. 2021 IEEE ACM Trans. Comput. Biol. Bioi. 18 296
[1] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[2] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[10] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[11] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[12] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[13] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[14] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[15] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
No Suggested Reading articles found!