Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 119801    DOI: 10.1088/1674-1056/acea6a
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Thermodynamics of warm axionic Abelian gauge inflation

Xi-Bin Li(李喜彬)1,2,† and Yan-Ling Wu(武燕玲)1,2
1 College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China;
2 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China
Abstract  Inflationary spectral index from the Langevin equation is calculated under the frame of warm inflationary scenario with inflaton interacting with U(1) gauge fields through the Chern-Simons coupling $\propto\phi F_{\mu\nu}\tilde{F}^{\mu\nu}/f$. Under the strong dissipative condition, the spectral index is calculated in terms of the ratio of Hubble parameter to temperature H/T. Then relation between H/T and other cosmic parameters is analytically expressed, based on which a spectral index related to the Chern-Simons coupling strength is further obtained. Numerical results show that cosmic temperature T closes to a constant during inflation and decreases after inflation without a reheating process. Meanwhile, the ratio H/T tends to a constant if the gauged coupling constant is less than a threshold. This phenomenon shows that cosmic temperature may be an important physical parameter with a special value and adiabatic approximation still holds. We obtain the estimate H/T≤0.3377 during inflation from Planck data and other constraint conditions.
Keywords:  axion inflation      thermodynamics  
Received:  28 May 2023      Revised:  03 July 2023      Accepted manuscript online:  26 July 2023
PACS:  98.80.-k (Cosmology)  
  98.80.Bp (Origin and formation of the Universe)  
  98.80.Es (Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc))  
  05.70.Ce (Thermodynamic functions and equations of state)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11864030 and 62061037), Inner Mongolia Natural Science Foundation (Grant Nos. 2021LHBS01001 and 2020BS02011), and the Scientific Research Funding Project for Introduced High Level Talents of IMNU (Grant No. 2020YJRC001).
Corresponding Authors:  Xi-Bin Li     E-mail:  lxbimnu@imnu.edu.cn

Cite this article: 

Xi-Bin Li(李喜彬) and Yan-Ling Wu(武燕玲) Thermodynamics of warm axionic Abelian gauge inflation 2023 Chin. Phys. B 32 119801

[1] Linde A D 1983 Phys. Lett. B 129 177
[2] Guth A H 1981 Phys. Rev. D 23 347
[3] Linde A D 1982 Phys. Lett. B 108 389
[4] Albrecht A and Steinhardt P J 1982 Phys. Rev. Lett. 48 1220
[5] Hawking S W 1982 Phys. Lett. B 115 295
[6] Guth A H and Pi S Y 1982 Phys. Rev. Lett. 49 1110
[7] Liu X W, et al. 2009 Chin. Phys. B 18 1362
[8] Yang J, et al. 2023 Chin. Phys. Lett. 40 019801
[9] Ade P A R, et al. 2016 Astron. Astrophys. 594 A13
[10] Komatsu E, et al. 2011 Astrophys. J. Suppl. Ser. 192 18
[11] An Z Y, Yue C X and Liu Z C 2018 Chin. Phys. Lett. 35 061401
[12] Bastero-Gil M and Berera A 2009 Int. J. Mod. Phys. A 24 2207
[13] Bartrum Sam et al. 2014 Phys. Lett. B 732 116
[14] Bastero-Gil M, Berera A, Ramos R O and Rosa J G 2016 Phys. Rev. Lett. 117 151301
[15] Arya R, Mishra A K 2022 Physics of the Dark Universe 37 101116
[16] Berera A, Moss I G and Ramos R O 2009 Rep. Prog. Phys. 72 026901
[17] Rammer J 2007 Quantum Field Theory of Non-equilibrium States (Cambridge:Cambridge University Press)
[18] Berera A, Moss I G and Ramos R O 2007 Phys. Rev. D 76 083520
[19] Bartrum S, Berera A and Rosa J G 2015 Phys. Rev. D 91 083540
[20] Freese K, Frieman J A and Olinto A V 1990 Phys. Rev. Lett. 65 3233
[21] Ringwald A 2012 Dark Universe 1 116
[22] Ferreira R Z and Notari A 2018 Phys. Rev. D 97 063528
[23] Akrami Y, Arroja F, Ashdown M, et al. 2020 Astron. Astrophys. 641 A10
[24] Salvio A, Strumia A and Xue W 2014 J. Cosmol. Astropart. Phys. 01 011
[25] Berghaus K V, Graham P W and Kaplan D E 2020 J. Cosmol. Astropart. Phys. 03 034
[26] Das S, Goswami G and Krishnan C 2020 Phys. Rev. D 101 103529
[27] Laine M and Procacci S 2021 J. Cosmol. Astropart. Phys. 06 031
[28] Das S and Ramos R O 2020 Phys. Rev. D 102 103522
[29] Kamali V 2019 Phys. Rev. D 100 043520
[30] Barnaby N, Moxon J, Namba R, Peloso M, Shiu G and Zhou P 2012 Phys. Rev. D 86 103508
[31] Berera A, Moss I G and Ramos R O 2007 Phys. Rev. D 76 083520
[32] Raffelt G G 2008 Lect. Notes Phys. 741 51
[33] Li X B, Zheng X G and Zhu J Y 2019 Phys. Rev. D 99 043528
[34] Olver F W J, Lozier D W, Boisvert R F, et al. 2010 NIST handbook of mathematical functions (Cambridge:Cambridge University Press). From this book, we take the formulas (5.11.9), (5.15.3), (5.15.8), (10.22.57), (33.2.1), (33.2.5), (33.5.1), (33.5.2) and (33.10.2) to use in the present study.
[35] Bhattacharya K, Mohanty S and Nautiyal A 2006 Phys. Rev. Lett. 97 251301
[36] Sharma R, Subramanian K and Seshadri T R 2018 Phys. Rev. D 97 083503
[37] Visinelli L 2011 J. Cosmol. Astropart. Phys. 09 013
[1] Shadow thermodynamics of AdS black hole with the nonlinear electrodynamics term
He-Bin Zheng(郑何斌), Ping-Hui Mou(牟平辉), Yun-Xian Chen(陈芸仙), and Guo-Ping Li(李国平). Chin. Phys. B, 2023, 32(8): 080401.
[2] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[3] Optimal driving field for multipartite quantum battery coupled with a common thermal bath
Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙), and X G Wang(王晓光). Chin. Phys. B, 2023, 32(11): 110301.
[4] Quantum Stirling heat engine with squeezed thermal reservoir
Nikolaos Papadatos. Chin. Phys. B, 2023, 32(10): 100702.
[5] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[6] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[7] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[8] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[9] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[10] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[11] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[12] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[13] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
[14] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[15] Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
Yi-Huan Wei(魏益焕). Chin. Phys. B, 2019, 28(12): 120401.
No Suggested Reading articles found!