Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088902    DOI: 10.1088/1674-1056/abff2d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Detection of influential nodes with multi-scale information

Jing-En Wang(王静恩)1,†, San-Yang Liu(刘三阳)1, Ahmed Aljmiai2, and Yi-Guang Bai(白艺光)1,‡
1 School of Mathematics and Statistics, Xidian University, Xi'an 710071, China;
2 David R. Cheriton School of Computer Science, University of Waterloo, Canada
Abstract  The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network's local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the k-shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.
Keywords:  influential nodes      multi-scale      network connectivity      network transmission  
Received:  30 March 2021      Revised:  25 April 2021      Accepted manuscript online:  08 May 2021
PACS:  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11801430, 11801200, 61877046, and 61877047).
Corresponding Authors:  Jing-En Wang, Yi-Guang Bai     E-mail:  jewang008@126.com;ygbai@foxmail.com

Cite this article: 

Jing-En Wang(王静恩), San-Yang Liu(刘三阳), Ahmed Aljmiai, and Yi-Guang Bai(白艺光) Detection of influential nodes with multi-scale information 2021 Chin. Phys. B 30 088902

[1] Fang X, Misra S, Xue G and D Yang 2012 IEEE Commun. Surv. Tut. 14 944
[2] Watts D J, Dodds P S and Newman M E J 2002 Science 1302 296
[3] Tang L, Jing K, He J and Stanley H 2016 Physica A 58 443
[4] Tang L, Jing K, He J and Stanley H 2016 Physica A 129 459
[5] Xu X L, Liu C P and He D R 2016 Chin. Phys. Lett. 33 48901
[6] Yang Y Z, Hu M and Huang T Y 2020 Chin. Phys. B29 088903
[7] He J L and Chen D B, Sun C J, et al. 2017 Physica A 438 469
[8] Wang W, Tang M, Stanley E H, et al. 2017 Rep. Prog. Phys. 80 036603
[9] Liu J G, Hou L, Pan X, et al. 2016 Sci Rep-UK 6 18653
[10] Li G J, Hu J, Song Y Q, et al. 2012 Sci Rep-UK 2 292
[11] Langville A N and Meyer C D 2011 Math. Intell. 30 68
[12] Bartesaghi P, Benzi M, Clemente G P, et al. 2020 Siam. J. Financ. Math. 11 526
[13] Bai Y, Liu S, Yin K, et al. 2019 Appl. Math. Model 75 333
[14] Gong Y D, Liu S Y and Bai Y G 2021 Knowledge-Based Systems 0950 106942
[15] Bai Y G, liu S Y, Li Q and Yuan J 2021 IEEE Trans. Syst., Man, Cybern., Syst. 1
[16] Wang X J, Song M, Jin L, et al. 2017 Chin. Phys. B 26 088901
[17] Song W J, Liu S Y and Bai Y G 2019 Int. J. Mod. Phys. C 30 1950082
[18] Liu J 2021 Chin. Phys. B 30 016401
[19] Bonacich P 2019 J. Math. Sociol. 2 113
[20] Wang J W, Rong L L and Guo T Z 2010J. Dalian Univ. Technol 50 822
[21] Sabidussi G 1996 Psychometrika 31 581
[22] K-I G, Oh E, Kahng B, et al. 2003 Phys. Rev. E 67 017101
[23] Bai Y G, Liu S Y and Zhang Z H 2017 Int. J. Mod. Phys. C 28 1750107
[24] Katz L 1953 Phychometrika 18 39
[25] Lü L, Zhou T, Zhang Q M, et al. 2016 Nat. Commun. 7 10168
[26] Bonacich P 1999 J. Pers. Soc. Psychol 77 967
[27] Kitsak M, Gallos L K, Havlin S, et al. 2010 Nat. Phys. 6 888
[28] Huang L Y, Tang P C, Huo Y L et al. 2019 Acta Phys. Sin. 68 128901 (in Chinese)
[29] Yang Y Z, Hu M and Huang T Y 2020 Chin. Phys. B 29 088903
[30] Lü L, Zhou T, Zhang Q M, et al. 2016 Nat. Commun. 7 10168
[31] Ruan Y R, Lao S Y, Xiao Y D, et al. 2016 Chin. Phys. Lett. 33 28901
[32] Liu F, Wang Z and Y Deng 2020 Knowledge-Based Systems 193 105464
[33] Ruan Y, Tang Y, Hu Y, et al. 2020 IEEE Access 8 2972107
[34] Yang H H and An S 2020 Symmetry 12 123
[35] Sun Q, Yang G and Zhou A 2020 Complexity 2020 1
[36] Yang Y Z, Yu L, Wang X, et al. 2020 Int. J. Mod. Phys. C 31 2050022
[37] Yang Y Z, Hu M and Huang T Y 2020 Chin. Phys. B 29 088903
[38] Granovetter M S 1973 Amer. J. Sociol. 78 1360
[39] Onnela J P, Saramaeki J, Hyvoenen J, et al. 2007 Proc. Nat. Acad. Sci. USA 104 7332
[40] Salton G and Mcgill M J 1983 New Zealand: McGraw-Hill 32 373
[41] Meng Y, Chen G and Fu X 2011 Physica A:Statal Mechanics and its Applications 390 2408
[42] Cheng X, Ren F, Shen H, et al. 2010 Journal of Statal Mechanics: Theory and Experiment 10 P10011
[43] Zachary W W 1977J. Anthropol. Res. 33 452
[44] Lusseau D, Schneider K, Boisseau O J, et al. 2003 Behav. Ecol. Sociobiol 54 396
[45] Watts D J and Strogatz S H 1998 Nature 393 6684
[46] Kendall M 1938 Biometrika 30 81
[1] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[2] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[3] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[4] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[5] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[6] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[7] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[8] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[9] Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular
Hui-Juan Guo(郭慧娟), Ying-Hua Liu(刘应华), Yi-Nao Su(苏义脑), Quan-Li Zhang(张全立), and Guo-Dong Zhan(詹国栋)†. Chin. Phys. B, 2020, 29(10): 104602.
[10] An infrared and visible image fusion method based uponmulti-scale and top-hat transforms
Gui-Qing He(何贵青), Qi-Qi Zhang(张琪琦), Jia-Qi Ji(纪佳琪), Dan-Dan Dong(董丹丹), Hai-Xi Zhang(张海曦), Jun Wang(王珺). Chin. Phys. B, 2018, 27(11): 118706.
[11] Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer
Zheng Xiao-Bo (郑小波), Jiang Nan (姜楠). Chin. Phys. B, 2015, 24(6): 064702.
[12] Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
Dou Fu-Xiang (窦富祥), Jin Ning-De (金宁德), Fan Chun-Ling (樊春玲), Gao Zhong-Ke (高忠科), Sun Bin (孙斌). Chin. Phys. B, 2014, 23(12): 120502.
No Suggested Reading articles found!