Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 058901    DOI: 10.1088/1674-1056/ac8e56
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

AIGCrank: A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality

Ping-Le Yang(杨平乐)1, Lai-Jun Zhao(赵来军)1,†, Chen Dong(董晨)2, Gui-Qiong Xu(徐桂琼)2, and Li-Xin Zhou(周立欣)1
1 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Department of Information Management, School of Management, Shanghai University, Shanghai 200444, China
Abstract  The influence maximization problem in complex networks asks to identify a given size of seed spreaders set to maximize the number of expected influenced nodes at the end of the spreading process. This problem finds many practical applications in numerous areas such as information dissemination, epidemic immunity, and viral marketing. However, most existing influence maximization algorithms are limited by the "rich-club" phenomenon and are thus unable to avoid the influence overlap of seed spreaders. This work proposes a novel adaptive algorithm based on a new gravity centrality and a recursive ranking strategy, named AIGCrank, to identify a set of influential seeds. Specifically, the gravity centrality jointly employs the neighborhood, network location and topological structure information of nodes to evaluate each node's potential of being selected as a seed. We also present a recursive ranking strategy for identifying seed nodes one-by-one. Experimental results show that our algorithm competes very favorably with the state-of-the-art algorithms in terms of influence propagation and coverage redundancy of the seed set.
Keywords:  influential nodes      influence maximization      gravity centrality      recursive ranking strategy  
Received:  07 April 2022      Revised:  21 July 2022      Accepted manuscript online:  01 September 2022
PACS:  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Social Science Foundation of China (Grant Nos. 21BGL217 and 18AZD005) and the National Natural Science Foundation of China (Grant Nos. 71874108 and 11871328).
Corresponding Authors:  Lai-Jun Zhao     E-mail:  ljzhao@usst.edu.cn

Cite this article: 

Ping-Le Yang(杨平乐), Lai-Jun Zhao(赵来军), Chen Dong(董晨),Gui-Qiong Xu(徐桂琼), and Li-Xin Zhou(周立欣) AIGCrank: A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality 2023 Chin. Phys. B 32 058901

[1] Wang C, Shi Q H, Xiao W Z, Feng Y and Chen C 2021 Knowl-Based Syst. 213 106692
[2] Wang Z X, Sun C C, Xi J K and Li X C 2021 Future Gener. Comp. Sy. 118 327
[3] Guo J X and Wu W L 2021 ACM. T. Knowl. Discob. D. 15 1
[4] Yan X L, Cui Y P and Ni S J 2020 Chin. Phys. B 29 048902
[5] Calió A and Tagarelli A 2021 Knowl-Based Syst. 546 1273
[6] Li H, Zhang R S, Zhao Z L, Liu X and Yuan Y N 2021 Appl. Intell. 51 7749
[7] Güney E, Leitner M, Ruthmair M and Sinnl M 2021 Eur. J. Oper. Res. 289 144
[8] Wang X F, Tong X, Fan H, Wang C Y, Li J X and Wang X 2021 Knowl-Based Syst. 221 106944
[9] Yang Y Z, Hu M and Huang T Y 2020 Chin. Phys. B 29 088903
[10] Wang Z X, Sun C C, Yuan G, Rui X B and Yuan X D 2020 J. Comput. Sci. 43 101129
[11] Du Y X, Gao C, Hu Y, Sankaran M and Deng Y 2014 Physica A 399 57
[12] Wang J and Wang Y Q 2015 Chin. J. Phys. 53 020702
[13] Domingos P and Richardson M 2001 Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, USA, p. 57
[14] Bian T and Deng Y 2018 Chaos 28 043109
[15] Olivares R, Muñoz F and Riquelme F 2021 Knowl-Based Syst. 212 106623
[16] Kempe D, Kleinberg J and Tardos É 2003 Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 24-27, 2003, Washington, USA, p. 137
[17] Leskovec J, Krause A, Guestrin C, Faloutsos C, Vanbriesen J and Glance N 2007 Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 12-15, 2007, New York, USA, p. 420
[18] Goyal A, Lu W and Lakshmanan L V 2011 Proceedings of the 20th International Conference Companion on World Wide Web, March 25-28, 2011, New York, USA, p. 47
[19] Chen W, Wang Y and Yang S 2009 Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-30, 2009, Paris, France, p. 199
[20] Jung K, Heo W and Chen W 2012 Proceedings of the 12th International Conference on Data Mining, December 10-13, 2012, Brussels, Belgium, p. 918
[21] Sankar C P and Kumar K S 2016 PLoS One 11 e0168125
[22] Weskida M and Michalski R 2016 Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, August 18-21, 2016, San Francisco, USA, p. 1189
[23] Bao Z K, Liu J G and Zhang H F 2017 Phys. Lett. A 381 976
[24] Yang P L, Xu G Q, Yu Q and Guo J W 2020 Chaos 30 093106
[25] Sheikhahmadi A and Zareie A 2020 Appl. Soft Comput. 94 106436
[26] Freeman L C 1978 Soc. Netw. 1 215
[27] Freeman L C 1977 Sociometry 40 35
[28] Xu G Q, Meng L, Tu D Q and Yang P L 2021 Chin. Phys. B 30 088901
[29] Maksim K, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[30] Lü L Y, Zhou T, Zhang Q M and Stanley H E 2016 Nat. Commun. 7 10168
[31] Chen W, Wang C and Wang Y J 2010 Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 24-28, 2012, Washington, USA, p. 1029
[32] Zhang J X, Chen D B, Dong Q and Zhao Z D 2016 Sci. Rep. 6 27823
[33] Chen D B, Gao H, Lü L Y and Zhou T 2013 PLoS One 8 e77455
[34] Jiang L C, Zhao X, Ge B, Xiao W D and Ruan Y R 2019 Physica A 516 58
[35] Ullah A, Wang B, Sheng J F, Long J, Khan N and Sun Z J 2021 Expert Syst. Appl. 186 115778
[36] Gupta M and Mishra R 2021 Decis. Support Syst. 149 113608
[37] Wasserman S and Faust K 1994 Social network analysis: Methods and applications (Cambridge: Cambridge University Press) p. 178
[38] Namtirtha A, Dutta A and Dutta B 2018 Physica A 499 310
[39] Bae J and Kim S 2014 Physica A 395 549
[40] Ma L L, Ma C, Zhang H F and Wang B H 2016 Physica A 451 205
[41] Wang Z X, Du C J, Fan J P and Xing Y 2017 Neurocomputing 260 466
[42] Li H W, Shang Q Y and Deng Y 2021 Chaos Soliton Fract. 143 110456
[43] Yang X and Xiao F Y 2021 Knowl-Based Syst. 227 107198
[44] Yang P L, Liu X and Xu G Q 2019 Int. J. Mod. Phys. C 30 1940008
[45] http://konect.cc/networks/arenas-email/
[46] http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
[47] http://math.bu.edu/people/kolaczyk/datasets.html
[48] http://snap.stanford.edu/data/ca-GrQc.html
[49] http://vlado.fmf.uni-lj.si/pub/networks/data/dic/fa/FreeAssoc.htm
[50] http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm
[51] Guimerá R, Danon L, Díaz-Guilera A, Giralt F and Arenas A 2003 Phys. Rev. E 68 065103
[52] Bu D B, Zhao Y, Cai L, Xue H, Zhu X P, Lu H C, Zhang J F, Sun S W, Ling L J, Zhang N et al. 2003 Nucleic Acids Res. 31 2443
[53] Hand D J 2010 Int. Stat. Rev. 78 135
[54] Leskovec J, Kleinberg J and Faloutsos C 2007 ACM Trans. Knowl. Discov. Data 1 2
[55] Nelson D L, McEvoy C L and Schreiber T A 2004 Behav. Res. Meth. Ins. C. 36 402
[56] Corman S R, Kuhn T, Mcphee R D and Dooley K J 2002 Hum. Commun. Res. 28 157
[57] Yuan X, Shao S, Stanley H E and Havlin S 2015 Phys. Rev. E 92 032122
[58] Kundu S and Pal S K 2015 Inform. Sciences 316 107
[59] Uzzi B, Amaral L A and Reed-Tsochas F 2007 Eur. Manag. Rev. 4 77
[60] Qu C Q, Zhan X X, Wang G H, Wu J L and Zhang Z K 2019 Chaos 29 033116
[61] Song J, Weng T F, Gu C G and Yang H J 2020 Chin. Phys. B 29 080501
[1] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[2] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[3] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[4] Detection of influential nodes with multi-scale information
Jing-En Wang(王静恩), San-Yang Liu(刘三阳), Ahmed Aljmiai, and Yi-Guang Bai(白艺光). Chin. Phys. B, 2021, 30(8): 088902.
[5] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[6] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
No Suggested Reading articles found!