Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098903    DOI: 10.1088/1674-1056/acd3e2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Self-similarity of complex networks under centrality-based node removal strategy

Dan Chen(陈单)1,2, Defu Cai(蔡德福)3, and Housheng Su(苏厚胜)1,2,†
1 School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, China;
3 State Grid Hubei Electric Power Research Institute, Wuhan 430077, China
Abstract  Real-world networks exhibit complex topological interactions that pose a significant computational challenge to analyses of such networks. Due to limited resources, there is an urgent need to develop dimensionality reduction techniques that can significantly reduce the structural complexity of initial large-scale networks. In this paper, we propose a subgraph extraction method based on the node centrality measure to reduce the size of the initial network topology. Specifically, nodes with smaller centrality value are removed from the initial network to obtain a subgraph with a smaller size. Our results demonstrate that various real-world networks, including power grids, technology, transportation, biology, social, and language networks, exhibit self-similarity behavior during the reduction process. The present results reveal the self-similarity and scale invariance of real-world networks from a different perspective and also provide an effective guide for simplifying the topology of large-scale networks.
Keywords:  complex networks      subgraph extraction      self-similarity      scale invariance  
Received:  24 March 2023      Revised:  26 April 2023      Accepted manuscript online:  10 May 2023
PACS:  89.75.-k (Complex systems)  
  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the Science and Technology Project of State Grid Corporation of China (Grant No. 5100- 202199557A-0-5-ZN).
Corresponding Authors:  Housheng Su     E-mail:  houshengsu@gmail.com

Cite this article: 

Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜) Self-similarity of complex networks under centrality-based node removal strategy 2023 Chin. Phys. B 32 098903

[1] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[2] Zhou J, Yuan C, Qian Z Y, Wang B H and Nie S 2023 Chin. Phys. B 32 028902
[3] Shi C, Zhang Q and Chu T 2022 Chin. Phys. B 31 070203
[4] Wang J E, Liu S Y, Aljmiai A and Bai Y G 2021 Chin. Phys. B 30 088902
[5] Chen D, Shi D D and Pan G J 2019 Acta Phys. Sin. 68 118901 (in Chinese)
[6] Kim B J 2004 Phys. Rev. Lett. 93 168701
[7] Song C, Havlin S and Makse H A 2005 Nature 433 392
[8] Gfeller D and De Los Rios P 2007 Phys. Rev. Lett. 99 038701
[9] Serrano M Á, Krioukov D and Boguñá M 2008 Phys. Rev. Lett. 100 078701
[10] García-Pérez G, Boguñá M and Serrano M Á 2018 Nat. Phys. 14 583
[11] Zhou J, Jia Z and Li K Z 2017 Acta Phys. Sin. 66 060502 (in Chinese)
[12] Yang Q L, Wang L F, Li H and Yu M Z 2019 Acta Phys. Sin. 68 100501 (in Chinese)
[13] Zheng M, Allard A, Hagmann P, Alemán-Gómez Y and Serrano M Á 2020 Proc. Nati. Acad. Sci. USA 117 20244
[14] Zheng M, García-Pérez G, Boguñá M and Serrano M Á 2021 Proc. Nati. Acad. Sci. USA 118 e2018994118
[15] Chen D, Su H, Wang X, Pan G J and Chen G 2021 Phys. Rev. E 104 034304
[16] Chen D, Su H and Zeng Z 2023 IEEE Trans. Comput. Social Syst. 10 426
[17] Klemm K 2023 Nat. Phys. 19 318
[18] Villegas P, Gili T, Caldarelli G and Gabrielli A 2023 Nat. Phys. 19 445
[19] Chen D, Cai D and Su H 2023 IEEE Trans. Netw. Sci. Eng.
[20] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[21] Kadanoff L P 2000 Statistical Physics: Static, Dynamics and Renormalization (Singapore: World Scientific)
[22] Erdös P and Rényi A 1959 Publications Mathematicae Debrecen 6 290
[23] Barabási A L 2016 Network Science (Cambridge: Cambridge University Press)
[24] Borgatti S P 2005 Social Networks 27 55
[25] Brandes U 2001 J. Math. Sociol. 25 163
[26] Bavelas A 1950 J. Acoust. Soc. Am. 22 725
[27] Newman M E J 2008 The new palgrave encyclopedia of economics 2 1
[28] Egerer J 2016 DIW Data Documentation No. 83
[29] https://www.entsoe.eu/data/map/
[30] https://www.power.scigrid.de/
[31] Barabási A L, Albert R and Jeong H 1999 Physica A 272 173
[32] Barabási A L and Albert R 1999 Science 286 509
[33] Catanzaro M, Boguná M and Pastor-Satorras R 2005 Phys. Rev. E 71 027103
[34] Blondel V D, Guillaume J L, Lambiotte R and Lefebvre E 2008 J. Stat. Mech. 2008 P10008
[1] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[2] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[3] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[4] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[5] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[6] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[7] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[8] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[9] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[10] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[11] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[12] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[15] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
No Suggested Reading articles found!