Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 014208    DOI: 10.1088/1674-1056/ad0773
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity

Jingtong Geng(耿靖童)1, Shuyi Xu(徐书逸)2, Ting Jin(靳婷)1, Shulin Ding(丁舒林)2, Liu Yang(杨柳)1,†, Ying Wang(王颖)1, and Yonggang Zhang(张勇刚)1,‡
1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
2 National Laboratory of Solid State Microstructures, School of Physics, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Abstract  Parity—time (PT) and quasi-anti-parity—time (quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point (EP) is challenging due to strict fabrication requirements and experimental uncertainties. We propose a new quasi-APT-symmetric micro-optical gyroscope which can be operated at the EP by easily shifting the Kerr nonlinearity. A single resonator is used as the core sensitive component of the quasi-APT-symmetric optical gyroscope to reduce the size, overcome the strict structural requirements and detect small rotation rates. Moreover, the proposed scheme also has an easy readout method for the frequency splitting. As a result, the device achieves a frequency splitting 105 times higher than that of a classical resonant optical gyroscope with the Earth's rotation. This proposal paves the way for a new and valuable method for the engineering of micro-optical gyroscopes.
Keywords:  optical gyroscopes      quasi-anti-parity—time (quasi-APT) symmetric system      exceptional point (EP)      the Kerr nonlinearity  
Received:  29 August 2023      Revised:  20 October 2023      Accepted manuscript online:  27 October 2023
PACS:  42.50.-p (Quantum optics)  
  42.81.Pa (Sensors, gyros)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62273115, 62173105) and the Fundamental Research Funds for the Central Universities (Grant No. 3072022FSC0401).
Corresponding Authors:  Liu Yang, Yonggang Zhang     E-mail:  lyang@hrbeu.edu.cn;zhangyg@hrbeu.edu.cn

Cite this article: 

Jingtong Geng(耿靖童), Shuyi Xu(徐书逸), Ting Jin(靳婷), Shulin Ding(丁舒林), Liu Yang(杨柳), Ying Wang(王颖), and Yonggang Zhang(张勇刚) Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity 2024 Chin. Phys. B 33 014208

[1] Sun D X, Zhang D L, Lu L D, Xu T, Zheng X T, Zhou Z H and Zhu L Q 2023 Chin. Phys. B 32 044212
[2] Khial P P, White A D and Hajimiri 2018 Nat. Photonics 12 671
[3] Zhang J Z, Ma H L, Li H Z and Jin Z H 2017 Opt. Lett. 42 3658
[4] Li H Z, Lin Y, Liu L, Ma H L and Jin Z H 2020 Opt. Express 28 18103
[5] Jiang X S, Gu J X, Cheng X Y, Li G Y, Bai Z Q, Shi Q and Xiao M 2021 Photonics Res. 9 722
[6] Lai Y H, Suh M G, Lu Y K, Shen B, Yang Q F, Wang H, Li J, Lee S H, Yang K Y and Vahala K 2020 Nat. Photonics 14 345
[7] Liang W, llchenko V S, Savchenkov A A, Dale E, Eliyahu D, Matsko A B and Maleki L 2017 Optica 4 114
[8] Geng J T, Yang L, Zhao S H and Zhang Y G 2020 Opt. Express 28 32907
[9] Geng J T, Yang L and Zhang Y G 2022 IEEE T. Instrum. Meas. 71 7004204
[10] Li H Z, Lin Y, Liu L, Ma H L and Jin Z H 2020 Opt. Express 28 18103
[11] Liang J T, Yang L, Liu Z, Liu S L, Geng J T and Zhang Y G 2022 Opt. Commun. 520 128423
[12] Gao W, Wang Z, Wang G C and Miao W Q 2019 IEEE Photonics J. 11 7102313
[13] Zhao H, Chen Z W, Zhao R G and Feng L 2018 Nat. Commun. 9 1764
[14] Hodaei H, Hassan A U, Wittek S, Gracia H G, Ganainy R E, Christodoulides D N and Khajavikhan M 2017 Nature 548 187
[15] Sakhdari M, Farhat M and Chen P Y 2017 New J. Phys. 19 065002
[16] Liu Q J, Wang B, Ke S L, Long H, Wang K and Lu P X 2017 Opt. Express 25 7203
[17] Zhong Q, Ren J, Khajavikhan M, Christodoulides D N, Özdemir Ş K and Ganainy R E 2019 Phys. Rev. Lett. 122 153902
[18] Chen W J, Özdemir Ş K, Zhao G M, Wiersig J and Yang L 2017 Nature 548 192
[19] Smith D D, Chang H, Horstman L and Diels J C 2019 Opt. Express 27 34169
[20] Horstman L, Hsu N, Hendrie J, Smith D and Diels J C 2020 Photonics Res. 8 252
[21] Lai Y H, Lu Y K, Suh M G, Yuan Z Q and Vahala K 2019 Nature 576 65
[22] Ren J, Hodaei H, Harari G, Hassan A U, Chow W, Soltani M, Christodoulides D and Khajavikhan M 2017 Opt. Lett. 42 1556
[23] Hokmabadi M P, Schumer A, Christodoulides D N and Khajavikhan M 2019 Nature 576 70
[24] Carlo M D, Leonardis F D, Lamberti L and Passaro V M N 2019 Opt. letters 44 3956
[25] Zhang H L, Peng M Y, Xu X W and Jing H 2022 Chin. Phys. B 31 014215
[26] Chen T Y, Xiao Z S, Jiang S, Li W S, Li J C, Wang Y F, Wang X C, Huang A P and Zhang H 2022 J. Appl. Phys. 131 243101
[27] Huang D, Pintus P and Bowers J E 2018 Opt. Mater. Express 8 2471
[1] Measuring small longitudinal phase shifts via weak measurement amplification
Kai Xu(徐凯), Xiao-Min Hu(胡晓敏), Meng-Jun Hu(胡孟军), Ning-Ning Wang(王宁宁), Chao Zhang(张超), Yun-Feng Huang(黄运锋), Bi-Heng Liu(柳必恒), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(3): 030602.
[2] Versatile and controlled quantum teleportation network
Yao-Yao Zhou(周瑶瑶), Peng-Xian Mei(梅鹏娴), Yan-Hong Liu(刘艳红), Liang Wu(吴量), Yan-Xiang Li(李雁翔), Zhi-Hui Yan(闫智辉), and Xiao-Jun Jia(贾晓军). Chin. Phys. B, 2024, 33(3): 034209.
[3] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[4] Unconventional photon blockade in the two-photon Jaynes-Cummings model with two-frequency cavity drivings and atom driving
Xin Liu(刘欣), Meng-Yu Tian(田梦雨), Xiao-Ning Cui(崔晓宁), and Xin-He Zhang(张馨鹤). Chin. Phys. B, 2024, 33(2): 020308.
[5] Optimal and robust control of population transfer in asymmetric quantum-dot molecules
Yu Guo(郭裕), Songshan Ma(马松山), and Chuan-Cun Shu(束传存). Chin. Phys. B, 2024, 33(2): 024203.
[6] Phase sensitivity with a coherent beam and twin beams via intensity difference detection
Jun Liu(刘俊), Tao Shao(邵涛), Chenlu Li(李晨露), Minyang Zhang(张敏洋), Youyou Hu(胡友友), Dongxu Chen(陈东旭), and Dong Wei(卫栋). Chin. Phys. B, 2024, 33(1): 014203.
[7] Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force
Jimmi Hervé Talla Mbé, Ulrich Chancelin Tiofack Demanou, Christian Kenfack-Sadem, and Martin Tchoffo. Chin. Phys. B, 2023, 32(12): 124202.
[8] Preparation of squeezed light with low average photon number based on dynamic Casimir effect
Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 120301.
[9] Generation of structure light in probe absorption spectrum via microwave-driven Y-type atomic system
Muhammad Saeed and Muqaddar Abbas. Chin. Phys. B, 2023, 32(12): 124211.
[10] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[11] Dynamic modulated single-photon routing
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Miao Hu(胡淼), Mengmeng Xu(许蒙蒙), Xue-Fang Zhou(周雪芳), Xiuwen Xia(夏秀文), Jing-Ping Xu(许静平), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 124203.
[12] Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(11): 114205.
[13] Quantum-enhanced optical precision measurement assisted by low-frequency squeezed vacuum states
Guohui Kang(康国辉), Jinxia Feng(冯晋霞), Lin Cheng(程琳), Yuanji Li(李渊骥), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2023, 32(10): 104204.
[14] Efficient transfer of metallophosphor excitons via confined polaritons in organic nanocrystals
Wenbin Lu(芦文斌), Yongcong Chen(陈永聪), Xuyun Yang(杨旭云), and Ping Ao(敖平). Chin. Phys. B, 2023, 32(10): 104212.
[15] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
No Suggested Reading articles found!