Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087101    DOI: 10.1088/1674-1056/acc935
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field

Yu Dong(董煜)1, Zhi-Gang Shao(邵志刚)1,2,†, Cang-Long Wang(王苍龙)3,4, and Lei Yang(杨磊)3,4
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China;
2. Guangdong--Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China;
3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
4. School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Adsorption characteristics of CO adsorbed on pristine 4,12,2-graphyne (4,12,2-G) and Fe-doped 4,12,2-graphyne (Fe-4,12,2-G) are studied by first-principles calculations. It is shown that CO is only physically adsorbed on pristine 4,12,2-G. Fe atoms can be doped into 4,12,2-G stably and lead to band gap opening. After doping, the interaction between Fe-4,12,2-G and CO is significantly enhanced and chemisorption occurs. The maximum adsorption energy reaches -1.606 eV. Meanwhile, the charge transfer between them increases from 0.009e to 0.196e. Moreover, the electric field can effectively regulate the adsorption ability of the Fe-4,12,2-G system, which is expected to achieve the capture and release of CO. Our study is helpful to promote applications of two-dimensional carbon materials in gas sensing and to provide new ideas for reversible CO sensor research.
Keywords:  CO      Fe-doped 4      12      2-graphyne      applied electric field      first-principles calculations  
Received:  08 February 2023      Revised:  15 March 2023      Accepted manuscript online:  31 March 2023
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.52072132).
Corresponding Authors:  Zhi-Gang Shao     E-mail:  zgshao@scnu.edu.cn

Cite this article: 

Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊) Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field 2023 Chin. Phys. B 32 087101

[1] Rose J J, Wang L, Xu Q, McTiernan C F, Shiva S, Tejero J and Gladwin M T 2017 Am. J. Respir. Crit. Care Med. 195 596
[2] Hampson N B and Bodwin D 2013 J. Emerg. Med. 44 625
[3] Li F, Chan H C O, Liu S, Jia H, Li H, Hu Y, Wang Z and Huang W 2015 Forensic Sci. Int. 253 112
[4] Su H C and Myung N V 2019 Electroanalysis 31 437
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V and Firsov A A 2004 Science 306 666
[6] Basu S and Bhattacharyya P 2012 Sens. Actuator B Chem. 173 1
[7] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
[8] Leenaerts O, Partoens B and Peeters F 2008 Phys. Rev. B 77 125416
[9] Yang D, Yang N, Ni J, Xiao J, Jiang J, Liang Q, Ren T and Chen X 2017 Mater. Des. 119 397
[10] Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256
[11] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372
[12] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X and Zhong D 2017 Nat. Commun. 8 14924
[13] Zhang L, Wang Z, Wang Z M, Du S, Gao H J and Liu F 2015 J. Phys. Chem. Lett. 6 2959
[14] Fan Q, Yan L, Tripp M W, Krejčí O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P and Gottfried J M 2021 Science 372 852
[15] Liu X, Cho S M, Lin S, Chen Z, Choi W, Kim Y M, Yun E, Baek E H, Ryu D H and Lee H 2022 Matter 5 2306
[16] Yang D C, Tian Z W, Chen Y K, Eglitis R I, Zhang H X and Jia R 2020 Appl. Surf. Sci. 499 143800
[17] Dwivedi S 2022 Int. J. Hydrog. Energy 47 41848
[18] Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H and Li Y 2018 Chem. Rev. 118 7744
[19] Zhang H, Lee J Y and Liu H 2021 J. Phys. Chem. C 125 10948
[20] Rafique M, Shuai Y, Tan H P and Hassan M 2017 Chin. Phys. B 26 056301
[21] Gao X, Zhou Q, Wang J, Xu L and Zeng W 2020 Appl. Surf. Sci. 517 146180
[22] Zhao D, Fan X, Luo Z, An Y and Hu Y 2018 Phys. Lett. A 382 2965
[23] Lakshmy S, Kundu A, Kalarikkal N and Chakraborty B 2023 J. Phys. D: Appl. Phys. 56 055402
[24] Liu X J, Cao W Q, Huang Z H, Yuan J, Fang X Y and Cao M S 2015 Chin. Phys. Lett. 32 036802
[25] Choi Y R, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y and Jang H W 2015 Carbon 91 178
[26] Song M, Chen Y, Liu X, Xu W, Zhao Y, Zhang M and Zhang C 2020 Phys. Lett. A 384 126332
[27] Zhang C P, Li B and Shao Z G 2019 Appl. Surf. Sci. 469 641
[28] Li B, Shao Z G and Fen Y T 2021 Phys. Chem. Chem. Phys. 23 12771
[29] Yang S, Qian X, Xu H, Xiong J, Wang Z and Gu H 2021 Physica E 128 114603
[30] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[31] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[32] Li H B, Feng Y T, Shao Z G, Wang C L and Yang L 2022 Appl. Surf. Sci. 586 152749
[33] Yang S, Lei G, Xu H, Xu B, Li H, Lan Z, Wang Z and Gu H 2019 Appl. Surf. Sci. 480 205
[34] Zhang T, Sun H, Wang F, Zhang W, Ma J, Tang S, Gong H and Zhang J 2018 Appl. Surf. Sci. 427 1019
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[40] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[41] Yang D C, Tian Z W, Chen Y K, Eglitis R I, Zhang H X and Jia R 2020 Appl. Surf. Sci. 499 143800
[42] Wanno B and Tabtimsai C 2014 Superlattices Microstruct. 67 110
[43] Zhang J N, Ma L, Zhang M and Zhang J M 2020 Physica E 118 113879
[44] Wang Y J, Wang C Y and Eang S Y 2011 Chin. Phys. B 20 036801
[45] Sharma A, Anu, Khan M S, Husain M, Khan M S and Srivastava A 2018 IEEE Sens. J. 18 2853
[46] Pang D, Shi P, Lin L, Xie K, Deng C and Zhang Z 2023 Phys. Chem. Chem. Phys. 25 6626
[47] Obodo K O, Ouma C N M, Obodo J T, Gebreyesus G, Rai D P, Ukpong A M and Bouhafs B 2021 Nanotechnology 32 355502
[48] Li W, Ding C, Li J, Ren Q, Bai G and Xu J 2020 Appl. Surf. Sci. 502 144140
[49] Wang J, Hou Y, Zhang X, Xu Z, Liu G, Hussain S and Qiao G 2023 Appl. Surf. Sci. 610 155399
[50] Pyykkö P and Atsumi M 2009 Chem. Eur. J. 15 186
[51] Ma L, Zhang J M, Xu K W and Ji V 2015 Appl. Surf. Sci. 343 121
[52] Hyman M P and Medlin J W 2005 J. Phys. Chem. B 109 6304
[53] Che F, Gray J T, Ha S and McEwen J S 2015 J. Catal. 332 187
[54] Ma S, Yuan D, Jiao Z, Wang T and Dai X 2017 J. Phys. Chem. C 121 24077
[55] Lin K Y, Nachimuthu S, Nguyen M T, Mizuta H and Jiang J C 2019 J. Phys. Chem. C 123 30373
[56] Yeh C H, Chen Y T and Hsieh D W 2021 RSC Adv. 11 33276
[1] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[2] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[3] Robustness of community networks against cascading failures with heterogeneous redistribution strategies
Bo Song(宋波), Hui-Ming Wu(吴惠明), Yu-Rong Song(宋玉蓉), Guo-Ping Jiang(蒋国平), Ling-Ling Xia(夏玲玲), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(9): 098905.
[4] Silicon photomultiplier based scintillator thermal neutron detector for China Spallation Neutron Source (CSNS)
Xiu-Ping Yue(岳秀萍), Zhi-Fu Zhu(朱志甫), Bin Tang(唐彬), Chang Huang(黄畅), Qian Yu(于潜), Shao-Jia Chen(陈少佳), Xiu-Ku Wang(王修库), Hong Xu(许虹), Shi-Hui Zhou(周诗慧), Xiao-Jie Cai(蔡小杰), Hao Yang(杨浩), Zhi-Yong Wan(万志勇), Zhi-Jia Sun(孙志嘉), and Yun-Tao Liu(刘云涛). Chin. Phys. B, 2023, 32(9): 090402.
[5] Dynamics of bubble-shaped Bose-Einstein condensates on two-dimensional cross-section in micro-gravity environment
Tie-Fu Zhang(张铁夫), Cheng-Xi Li(李成蹊), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(9): 090501.
[6] Calibration and cancellation of microwave crosstalk in superconducting circuits
Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平). Chin. Phys. B, 2023, 32(9): 094203.
[7] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[8] Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
Borui Zheng(郑博睿), Yuanpeng Liu(刘园鹏), Minghao Yu(喻明浩), Yuanzhong Jin(金元中), Qian Zhang(张倩), and Quanlong Chen(陈全龙). Chin. Phys. B, 2023, 32(9): 095203.
[9] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[10] Manipulating charge density wave state in kagome compound RbV3Sb5
Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春). Chin. Phys. B, 2023, 32(9): 096801.
[11] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[12] Electronic structure study of the charge-density-waveKondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[13] A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure
Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园). Chin. Phys. B, 2023, 32(9): 097402.
[14] Tuning magneto-dielectric properties of Co2Z ferrites via Gd doping for high-frequency applications
Jian Wu(武剑), Bing Lu(卢冰), Ying Zhang(张颖), Yixin Chen(陈一鑫), Kai Sun(孙凯), Daming Chen(陈大明), Qiang Li(李强), Yingli Liu(刘颖力), and Jie Li(李颉). Chin. Phys. B, 2023, 32(9): 097501.
[15] Elemental composition x-ray fluorescence analysis with a TES-basedhigh-resolution x-ray spectrometer
Bingjun Wu(吴秉骏), Jingkai Xia(夏经铠), Shuo Zhang(张硕), Qiang Fu(傅强), Hui Zhang(章辉), Xiaoming Xie(谢晓明), and Zhi Liu(刘志). Chin. Phys. B, 2023, 32(9): 097801.
No Suggested Reading articles found!